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Abstract – The stick-slip and smooth sliding regimes of motion for the multicontact frictional
interface are studied within the earthquake-like model. It is shown that the stick-slip appears
when two necessary conditions are fulfilled: first, the system must be soft enough for the elastic
instability to emerge, and second, it must be ageing of the interface. The stick-slip exists only for
an interval of sliding velocities v1 < vd < v2, where both boundary velocities v1,2 are determined
by the ageing rate.

Copyright c© EPLA, 2015

Introduction. – The regime of motion of the frictional
interface —stick-slip or smooth sliding— is a rather old
but very important problem in tribology [1,2]. In some
situations (for example, for violin playing) stick-slip is
a desirable regime, but in the majority of cases (e.g.,
for windshield wiper, car engine operation, earthquakes,
etc.) the stick-slip has to be avoided or suppressed at
least. These two regimes, the stick-slip and smooth slid-
ing, and the transitions between them are traditionally
described by a phenomenological theory based on the “ve-
locity weakening” assumption [1,2]: if the friction force
decreases when the sliding velocity grows, the motion may
become unstable and could switch to stick-slip, either pe-
riodic or irregular (intermitted) motion. The theory pre-
dicts that generally stick-slip emerges for a soft system
and low driving velocities. However, a general physical
theory of this problem is still lacking.

In the present work we consider a multicontact inter-
face (MCI), when the contact between two surfaces is due
to many “frictional” contacts (asperities, bridges, etc.)
—a rather general situation in tribology. The MCI may
be described by an earthquake-like (EQ) model (based
on the famous spring-and-block Burridge and Knopoff
model [3] and adapted to the frictional interface, e.g., in
refs. [4–6]), which allows an analytical description using
the master equation (ME) approach [7,8]. The stick-slip
motion in the MCI may appear, if and only if two in-
gredients are incorporated into the model: the elastic in-
stability of the system and ageing of the contacts [9,10].
The aim of the present work is to find the conditions
when the stick-slip regime emerges in the multicontact
interface.

EQ model and ME approach. – The EQ model is
shown schematically in fig. 1 (inset). The top block (the
slider) is coupled with the bottom block (the base; we as-
sume it to be rigid and fixed) by N frictional contacts.
Each contact is characterized by a shear force fi = kxi,
where k is the contact stiffness1 and xi is its strain, and
by a stretching threshold xsi = fsi/k at which the con-
tact breaks. The contact thresholds are characterized by
some distribution Pc(x) which is determined by interface
structure, e.g., by surface roughness (in simulation we
assume that Pc(x) has the Gaussian shape centered at
x = xs = fs/k with a dispersion ∆xs = ∆fs/k). The con-
tact stretches elastically so long as |fi| < fsi, but breaks
when the threshold is exceeded. When a contact breaks,
its stretching drops to xi ∼ 0, and evolution continues
from there, with a new value (taken randomly from the
distribution Pc(x)) for its successive breaking threshold
assigned.

The EQ model, being a cellular automaton model, al-
lows a numerical study only. However, it is possible to
describe it analytically with the ME approach [7,8]. In-
troducing the distribution Q(x;X) of the contact stretch-
ings xi when the sliding block is at position X, evolution
of the system can be described by the integro-differential
equation (the master equation)

[
∂

∂X
+

∂

∂x
+ P (x)

]
Q(x;X) = δ(x) Γ(X), (1)

1We assume that all contacts have the same (average) stiffness k,
although in a more rigorous model their values have to be coupled

with the corresponding thresholds, ki ∝ f
1/2

si [8–10]; this assumption
does not modify our results.
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Fig. 1: (Color online) Rigid motion of the slider: the total force
from contacts Fc as a function of the slider displacement X for
two initial distributions Δf0/fs = 0.01 and 0.3 and two values
of the threshold distribution Δfs/fs = 0.1 and 0.3 (see legend).
Solid curves describe solutions of the master equation, dotted
curves show results of simulation of the earthquake-like model
with N = 103 contacts; the latter fluctuate with the amplitude
∝ N−1/2. Inset: the earthquake-like model.

where we assumed that broken contacts reappear with zero
stretching [8],

Γ(X) =

∫
∞

−∞

dξ P (ξ)Q(ξ;X) (2)

and

P (x) = Pc(x)/Jc(x), Jc(x) =

∫
∞

x

dξ Pc(ξ). (3)

The master equation should be solved starting from some
initial distribution Q(x;X = 0) = Qi(x); in what follows
we assume that Qi(x) has a Gaussian shape centered at
zero with a dispersion ∆x0 = ∆f0/k. The total force
experienced by the slider from the interface is then given
by

Fc(X) = Nk

∫
∞

−∞

dx x Q(x;X). (4)

A typical dependence of the force Fc on the slider dis-
placement X is shown in fig. 1. Except for the exotic case
of the delta-function distribution of thresholds, the system
always approaches the steady state with the distribution
Qs(x) in the limit X → ∞, where the function Fc(X)
takes the constant value Fk ≈ 1

2
Nfs. The value Fk corre-

sponds to the kinetic friction force, while the maximum of
the Fc(X) dependence is associated with the static friction
force. We emphasize that the shape of the function Fc(X)
depends on the initial distribution Qi(x) of the system:
the strongest initial oscillations of Fc(X) are achieved for
the delta-function initial distribution Qi(x) = δ(x), while
in the case of Qi(x) = Qs(x) the force is independent of
X, Fc(X) = Fk.

Elastic instability. – Now let us consider a system
where the top block is driven with a velocity vd through

Fig. 2: (Color online) (a) Distribution of thresholds Pc(fs);
(b) the friction force Fc and (c) the effective stiffness Keff,
eq. (5), as functions of the displacement X. Elastic instability
emerges when Keff(X∗) = K < K∗.

a spring of elastic constant K so that the driving force is
Fd = K(vdt−X); the role of spring may be played by the
elasticity of the slider itself, if the driving force is applied
to its top surface. For adiabatically slow driving, vd → 0,
if one starts from the relaxed state at t = 0, the increasing
driving force Fd has to be compensated by the force Fc

from the interface contacts, so that they grow together
at the beginning. However, when the slider displacement
X approaches the threshold value xs, the contacts start to
break (see the point marked by “1” in fig. 2), the growth
of Fc becomes slower and then changes to decreasing as
shown in fig. 2. If the driving spring is stiff enough, K >
K∗, the driving force Fd will adjust itself to the changed
value of Fc. For a soft system, however, at some point X∗

(marked by “2” in fig. 2) the two forces cannot compensate
one another, an elastic instability occurs, and the slider
will undergo an accelerated motion until the forces will
compensate one another again.

An alternative explanation of the elastic instability fol-
lows from the consideration of the effective potential en-
ergy of the system. The total force applied to the bottom
of the sliding block, which determines its displacement
X, is the sum of the applied force and the friction force,
Ftot(X) = K(vdt−X)−Fc(X). It can be viewed as derived
from the effective potential, Ftot(X) = −dVeff(X)/dX,

where Veff(X) = 1

2
K(vdt − X)2 +

∫ X

0
dξ Fc(ξ). The slider

state at the position X is stable if d2Veff(X)/dX2 =
K + dFc(X)/dX > 0 and unstable otherwise. If we in-
troduce the effective interface stiffness

Keff(X) = −dFc(X)/dX, (5)

then the slider motion becomes unstable for displacements
X where Keff(X) > K. Thus, the critical stiffness is de-
fined by K∗ = max Keff(X). If K > K∗, the system is
stiff and does not undergo elastic instability.

48004-p2



Stick-slip vs. smooth sliding

Fig. 3: (Color online) The critical stiffness K∗ as a function of
the threshold dispersion Δfs for different values of the initial
state distribution Δf0.

The critical value K∗ depends on two factors: on the
threshold distribution Pc(x) and on the initial distribu-
tion Qi(x); the maximum value of K∗ is achieved for the
delta-function initial distribution Qi(x) = δ(x), while the
minimum —equal to zero— for the stationary distribu-
tion Qi(x) = Qs(x). The dependence of K∗ on the model
parameters is shown in fig. 3; roughly it is described by

K∗ ≈ Nkfs/(∆fs + ∆f0). (6)

Dynamics. – The elastic instability is the necessary
but not sufficient condition for stick-slip to emerge; the
second necessary condition is the ageing of contacts —an
increase of contact thresholds with their lifetime. Indeed,
if after breaking the newborn contacts obtain thresholds
from the same distribution Pc(x), then the dependence
Fc(X) will remain approximately unchanged despite the
fact that the slider motion is accelerated in the interval
where Keff(X) > K∗ as demonstrated in fig. 4(a).

The simplest way to incorporate contact ageing is to in-
troduce a delay time τd, i.e., to assume that after breaking
the contact reappears after some time τd (thus, for a life-
time shorter than τd the threshold is zero). Within the
ME approach, the delay effects may be included as fol-
lows. Let N be the total number of contacts, Nc be the
number of attached (pinned) contacts, Nf = N − Nc be

the number of detached (sliding) contacts, and v = Ẋ
be the sliding velocity. The fraction of contacts that de-
tach per unit displacement of the sliding block is Γ(X) =∫

dx P (x;X)Q(x;X), i.e., when the slider shifts by ∆X,
the number of detached contacts changes by NcΓ∆X, so
that Nf = ΓvτdNc. Using Nc + Nf = N , we obtain
Nc = N/(1 + Γvτd) and Nf = NΓvτd/(1 + Γvτd). In-
troducing x̄ = 1/Γ and v̄ = x̄/τd, we can write

Nc = N/(1 + v/v̄). (7)

The pinned contacts produce the force Fc(X) defined
above by eq. (4) (with Nc instead of N) by solution of
the master equation.

Fig. 4: (Color online) (a) Dependence of the driving force Fd

(solid) and the slider velocity Ẋ (dotted curves, right axes) on
the slider displacement X for two values of the spring constant:
K/N = 5 (above the critical value K∗/N = 3.59) and K/N = 2
(when the elastic instability occurs). (b) Dependence of Fd on
time for different values of the delay time τd = 0, 0.09, 0.1
and 0.2 (see legend) for the spring constant K/N = 2. The
parameters are the following: fs = 1, Δfs = 0.1, Δf0 = 0.01,
k = 1, vd = 1, M/N = 10−4 (so that Ω = (K/M)1/2 = 223.6
for K/N = 5 and Ω = 141.4 for K/N = 2), η = 200 ∼ Ω, and
N = 104.

The slider motion is described by the equation

MẌ(t) + MηẊ(t) = K[vdt − X(t)] − Fc(X(t)), (8)

where M is the slider mass and the coefficient η describes
the rate of energy dissipation (e.g., due to phonons emit-
ted inside the slider); the latter is responsible for decaying
ringing oscillations at stick-slip and thus can be found ex-
perimentally. Figure 4(b) shows that for a large enough
delay time τd > τ∗ the slider motion corresponds to stick-
slip provided K < K∗.

To find the critical delay time τ∗, let us consider the
slider trajectory just after the critical displacement X∗

(the point “2” in fig. 2), when the elastic instability oc-
curs and the motion becomes unstable. The system dy-
namics is shown in fig. 5. Before the instability, t < t∗,
the two forces, the driving force Fd and the force from
contacts Fc, approximately compensate one another, and
the slider moves with a constant velocity, Ẋ ≈ vd. After
t∗, however, the forces become unbalanced, the difference
Ftot = Fd − Fc grows with ∆t = t− t∗ (see fig. 5(a)), and
the slider undergoes an accelerated motion with increasing
velocity (fig. 5(c)). As was found in ref. [10], for t > t∗

the slider position changes as

∆X(t) ≈ vd∆t

[
1 +

1

6
(Ω∆t)

2

]
, (9)

where Ω2 = K/M . When the delay time is nonzero, the
slider slips a distance ∆Xd = ∆X(τd) during τd. There-
fore, if ∆Xd > 1

2
∆xs, then most of the contacts break and

reform with f ∼ 0 during the time τd, and the distribu-
tion of stresses shrinks, Q(x; t∗ + τd) → δ(x). Thus, the
next cycle begins with a narrow stress distribution, and
the elastic instability will occur again —that is stick-slip.

The critical delay time τ∗ may be estimated from
eq. (9); for Ωτ∗ ≪ 1 this gives τ∗ ≈ ∆xs/vd, while for

48004-p3
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Fig. 5: (Color online) System dynamics at and after the elastic
instability for K/N = 2 and τd = ∞ (other parameters as
in fig. 4).

Fig. 6: (Color online) (a) The critical delay time τ∗ as a func-
tion of the slider mass M at constant vd = 1, and (b) τ∗

as a function of the driving velocity vd at fixed M = 10−4.
K/N = 2 and η = 0.3Ω; other parameters as in fig. 4.

Ωτ∗ ≫ 1 it leads to τ∗ ≈ (6∆xsM/Kvd)
1/3

. These re-
lations agree well with the numerics (see fig. 6) which
suggests the dependences τ∗(M) ≈ A1 + A2M

1/3 and

τ∗(vd) ≈ A3v
−1

d + A4v
−1/3

d , where A1...4 are numerical
constants. Numerics shows also that τ∗ increases with the
damping coefficient η; τ∗ depends also on the parameters
∆fs and ∆f0.

As follows from fig. 6(b), for a fixed nonzero value of
the delay time τd the system should undergo a transition

from smooth sliding to stick-slip when the driving veloc-

ity increases. Such transition is demonstrated in fig. 7(a).
The system exhibits hysteresis: when the driving veloc-
ity increases, the smooth to stick-slip transition occurs at
some velocity v1, while when vd decreases, the stick-slip
to smooth sliding transition occurs at a lower velocity v′

1.
The hysteresis takes place because, as mentioned above,
the criterion of the elastic instability to occur, depends
on the initial distribution for a given cycle of stick-slip,
which depends on the system prehistory. Thus, depending
on the system initial state and the model parameters, the
motion corresponds to either stick-slip or smooth sliding.
These regimes are stable, both correspond to regular
motion, in particular, the stick-slip motion is strictly
periodic.

Fig. 7: (Color online) The friction force as a function of time,
when the driving velocity vd (thick red line, right axes) con-
tinuously increases/decreases with time. (a) Fixed value of the
delay time τd = 0.1. (b) Delay time takes random values from
Gaussian distribution with 〈τd〉 = 0.2 and Δτd = 0.12. Insets
show the smooth to stick-slip transitions. K/N = 2, M = 10−4

and η = 0.3Ω; other parameters as in fig. 4.

The simplest “delay time” variant of ageing predicts
the transition from smooth sliding to stick-slip with the
increase of the driving velocity, as indeed was observed
experimentally [11,12]. More traditional, however, is the
opposite scenario, when stick-slip is observed at low vd

and changes to smooth sliding when the driving velocity
increases [1,2]. The EQ model does demonstrate such a be-
havior, if we assume that the parameter τd takes random
values from some distribution Pτ (τd) with a dispersion
∆τd, as shown in fig. 7(b). Moreover, in this case one may
expect an irregular stick-slip as well [13–15]. This second
transition occurs because the elastic instability disappears
at large velocities —after a slip phase at the stick-slip
event, the newborn contacts have the distribution with
the dispersion ∆x ∝ vd∆τd which grows with vd.

Ageing. – In a more general approach one has to in-
clude ageing of the contacts [5]. Indeed, the threshold
value of contact after its reattachment should grow with
the time of stationary contact, e.g., because of plastic de-
formations at the level of contacts or a slow formation of
chemical bonds.

Although we do not know the actual ageing mechanism,
one may assume that the evolution of newborn thresholds

48004-p4



Stick-slip vs. smooth sliding

Fig. 8: (Color online) The friction force vs. time for different
values of the ageing rate β (see legend); stick-slip exists for the
rates within the interval 1 ≤ β ≤ 1.6. fs = 1, Δfs = 0.1,
Δf0 = 0.01, k = 1, N = 2 × 103, K/N = 1, M = 10−4, vd = 1
and η = 0.1Ω.

can be represented as a stochastic process described by the
simplest stochastic equation dfsi = H(fsi) dt+G dw with
〈dw〉 = 0 and 〈dw dw〉 = dt, where H(f) and G are the
so-called drift and stochastic forces correspondingly [16].
Alternatively, this process is described by the Langevin
equation

dfsi(t)/dt = H(fsi) + Gξ(t), (10)

where ξ(t) is the Gaussian random force, 〈ξ(t)〉 = 0 and
〈ξ(t) ξ(t′)〉 = δ(t − t′). Equation (10) is equivalent to
the Fokker-Planck equation (FPE) for the distribution of
thresholds Pc(fsi; t):

∂Pc

∂t
+

dH

dfsi
Pc + H

∂Pc

∂fsi
=

1

2
G2

∂2Pc

∂f2
si

. (11)

Following ref. [17], let us assume that the drift
force is given by the expression H(f) = β2 (fs − f),
while the amplitude of the stochastic force is equal to
G = βδfs

√
2, where δ ≡ ∆fs/fs and β defines the

rate of ageing described by the timescale τβ = β−2.
With this choice, the stationary solution Pc0(f) of the
FPE corresponds to the Gaussian distribution Pc0(f) =
(2π)−1/2(δfs)

−1 exp
[
− 1

2
(1 − f/fs)

2/δ2
]
.

The ME approach described above should now be mod-
ified, because the distribution Pc(x) is not fixed but evolve
due to ageing of the contacts. Equation (11) describes how
the distribution of the thresholds evolves under the effect
of ageing alone. This equation may be rewritten as

∂Pc

∂t
= β2L̂Pc, L̂ =

∂

∂φ

(
φ − 1 + δ2

∂

∂φ

)
, (12)

where φ = f/fs. However, because the contacts contin-
uously break and form again when the slider moves, this
introduces two extra contributions in the equation deter-
mining ∂Pc/∂t in addition to the pure aging effect de-
scribed by eq. (12): a term P (x;X)Q(x;X) takes into
account the contacts that break, while their reappearance
with the threshold distribution Pci(x) (e.g., Pci(x) = δ(x))

Fig. 9: (Color online) The friction force as a function of
time, when the driving velocity vd (thick red line, right axes)
continuously increases/decreases with time. The insets show
the smooth to stick-slip transition at v1 and the stick-slip to
smooth sliding transition at v2 when vd increases. β = 1.5,
other parameters as in fig. 8.

Fig. 10: (Color online) The critical velocities v1,2 (solid sym-
bols) and v′

1,2 (open symbols) as functions of the ageing rate β.
Solid curves show fits v1,2 ∝ β2. The parameters are as in fig. 9.

gives rise to the second extra term in the equation. There-
fore, the full evolution of Pc(x;X) is described by the
equation

∂Pc(x;X)

∂X
− β2

v
L̂Pc(x;X) + P (x;X)Q(x;X) =

Pci(x) Γ(X). (13)

In the result we come to the set of equations (1)–(3), (13).
If now one drives the slider through an attached spring,

then the motion may correspond to either stick-slip or
smooth sliding depending on the rate β; the stick-slip
regime appears for the rates within some interval β1 ≤
β ≤ β2, while for smaller or larger values of β the motion
is smooth (see fig. 8).

Thus, when the driving velocity continuously increases,
the system should undergo two transitions, the smooth
to stick-slip transition at v1 and the stick-slip to smooth
sliding transition at v2; if then vd decreases, one again ob-
serves two transitions at v′

2 and v′

1 (see fig. 9). The critical
velocities v1 and v2 depend on the ageing rate β as

48004-p5
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Fig. 11: (Color online) (a) The friction force and (b) the effec-
tive stiffness Keff as functions of the driving velocity vd for the
ageing rate β = 1. The parameters are as in fig. 9.

v1,2 ∝ β2 (fig. 10). Both transitions may be explained
in the same way as above, if we remind that τβ ∼ τd: the
first transition at v1 occurs when τβ > τ∗ (provided the in-
stability criterion is satisfied), while the second transition
at v2 takes place when the elastic instability disappears
(see fig. 11).

Conclusion. – We presented the detailed study of the
stick-slip behavior of the multicontact interface described
by the earthquake-like model. The stick-slip emerges be-
cause of two factors, both of which are the necessary condi-
tions. First, the driving spring must be soft enough for the
elastic instability to emerge. Second, it must be ageing of
the interface —the growth of the static threshold with the
lifetime of the stationary contact. The first factor is con-
trolled by the dispersion ∆xs of the distribution Pc(x) of
the static thresholds. Therefore, using the interface with a
large value of ∆fs/fs, one may avoid the elastic instability
and thus stick-slip. Besides, the value K∗ also depends on
the distribution of stretchings in the initial state —if one
starts with the stationary distribution Qs(x), the system
will stay in the smooth sliding regime forever. Because of
the second factor —the contact ageing— the stick-slip ex-
ists only for the interval of sliding velocities v1 < vd < v2;
both boundary velocities v1,2 depend on the ageing rate β
as v1,2 ∝ β2. Therefore, the stick-slip may also be avoided
by an appropriate choice of the operating velocities.

Contrary to the phenomenological approach widely used
in the description of the stick-slip behavior, our approach

is based on the model with well-defined parameters which
may be measured experimentally and even calculated from
first principles. However, a weak point of our approach is
that we do not know the actual ageing mechanism. Al-
though it is quite hard to study this slow dynamics ex-
perimentally as well as with simulation, the problem of
interface ageing is very important not only for tribology,
but for other topics such as, e.g., seismology [17].
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