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A B S T R A C T

When an elastic block is squeezed in contact with a substrate the contact will in general consist of many asperity
contact regions. During sliding the long-range elastic coupling between the contact regions have a big influence
on the sliding dynamics: when the loading force increases the density of contact regions increases, which affects
the lateral coupling between the contact region, and introduces a dependence of the friction force on the loading
force. Here we present a full three-dimensional model study of the role of the elastic coupling on the friction force.
The theory is applied to rubber friction, but the mechanism for the dependence of the friction coefficient on the
load is relevant for non-rubber materials as well.
1. Introduction

The Amontons friction law states that the friction force Ff ¼ μFN is
proportional to the normal force or load FN, and is found to hold
remarkable well in many practical applications [1–3]. For elastic solids
with nominally flat but randomly rough surfaces, contact mechanics
theories and numerical simulations show that the contact area A is pro-
portional to the nominal contact pressure p0 ¼ FN=A0, where A0 is the
nominal contact area [4–12]. If it is assumed that a characteristic fric-
tional shear stress τf acts in the area of real contact, then the friction
coefficient μ ¼ τfA=ðp0A0Þ will be independent of the pressure p0, i.e.,
independent of the normal load FN ¼ p0A0. There are many reasons why
the Amontons friction law may fail, and in this work we discuss a
fundamental and very general mechanism, which is also very important
for rubber friction, e.g., for the friction between tires and road surfaces
[13,14].

The explanation of the Amontons friction law for a rough interface,
first proposed by Bowden and Tabor, is based on a static picture. How-
ever, the situationmay change drastically for a moving interface. Kinetics
of the multi-contact interface is typically described with the help of an
earthquakelike model [15,16], where the contact of two surfaces is due
to many microcontacts which break and restore during relative motion of
the surfaces (e.g., see Ref. [17] and references therein). At small driving
velocities, Fk increases linearly with speed, FkðvÞ � ηv. Indeed, if the
slider moves slow enough, thermal fluctuations sooner or later will break
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all contacts. The more slowly the slider moves, the longer time all con-
tacts are given to receive a fluctuation above their respective threshold,
therefore the smaller the resulting friction force is. This linear Fk � ηv
dependence could be represented as a (characteristically large) effective
viscosity η of an ultra-thin lubricant layer [18,19].

At high driving velocities the kinetic friction force exhibits the
opposite behavior, it decreases when v grows, roughly as FkðvÞ � fsv�=v,
due to aging effects. Indeed, after snapping, the contact slips for some
time, then it is reformed again and grows in size. The faster the slider
moves, the shorter time the contacts are left to be reformed and grow.
Thus, the kinetic friction force FkðvÞ increases with v at low v up to a

maximum at vm � ðfsv�=ηÞ1=2 and then decreases. On the decreasing
branch of FkðvÞ, i.e. for v > vm, the slider motion may become unstable
and change from smooth sliding to stick-slip motion: if the slider velocity
increases due to a fluctuation, the friction force decreases, and the slider
accelerates.

Solid objects usually have surface roughness on many length scales.
For the contact between elastic solids, the longest surface roughness re-
sults in macro-asperity contact regions. As the interface is observed at
increasing magnification one observes that the macroasperity contact
regions actually consist of many microcontacts and thus should exhibit
the FkðvÞ dependence described above. Due to variation in asperity sizes,
surface contamination and other surface properties, different macro-
contacts will be characterized by FkðvÞ dependences with different vm
values. For a nonrigid slider, its elasticity produces an interaction be-
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Fig. 1. The contact region between two solids with
random surface roughness. In (a) and (b) the black
regions denote the macroasperity contact regions,
which are the contact spots observed at low magnifi-
cation where only the most long-wavelength rough-
ness can be detected. When the normal force (load)
increases, the number of macroasperity contact re-
gions increases proportional to the load, but (for an
infinite system) the normalized probability distribu-
tion of macroasperity contact sizes is unchanged.
When we increase the magnification the macro-
asperity contact regions are observed to consist of
smaller microasperity contact regions. However, the
nature of the internal structure of the macroasperity
contact regions, e.g., the distribution of sized of the
microasperity contact region, does not depend on the
normal load.
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tween the macrocontacts: as soon as a contact fails, the forces on nearby
contacts must increase [20] and may provoke their breaking and sliding
as well.

In the following we consider surfaces which are nominally flat but
exhibit roughness at length scales much shorter than the linear size L of
the surface. Such surfaces have surface roughness power spectra with a
roll-off region for small wavenumbers [21]. When such surfaces are
observed at low magnification one observes only the most long wave-
length part of the surface roughness, and the contact appears to consist of
randomly distributed macro-asperity contact regions [5]. When a mac-
roasperity contact region is observed at higher magnification, shorter
wavelength roughness is observed and the macroasperity contact region
breaks up into smaller microasperity contact regions.

Contact mechanics studies show that for large systems with
increasing pressure p0, existing contact areas grow and new contact areas
form in such a way that the (normalized) interfacial stress distribution,
and also the size distribution of contact spots, are independent of the
squeezing pressure (see Fig. 1) [4–7]. When this is the case the macro-
scopic friction force will be proportional to the normal force even when
the friction force acting on the asperity contact regions at the smallest
length scale depends non-linearly on the asperity contact area. In this
case, since the distribution of microasperity contact regions within the
macroasperity contact regions does not depend on the load (see Fig. 1),
the only thing which could influence the sliding friction is the concen-
tration (a real density) of macro-asperity contact regions, which increases
proportional to p0.

In this work we present a full three-dimensional (3D) model for the
elastic coupling between the macroasperity contact regions. This is a
generalization of the 2D-model studied in Refs. [16,22]. We show that
the lateral coupling between the contact regions influences the stick-slip
dynamics of the contact regions and results in a dependence of the fric-
tion coefficient on the load, similarly to what was observed in recent
rubber friction experiments [23,24], and also in the present paper where
new experimental data are presented for a tire tread rubber sliding on a
concrete surface.
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This paper is organized as follows: In Sec. 2 we present a qualitative
discussion about why (or how) the contact pressure may influence the
friction coefficient. In Sec. 3 we present new experimental results for the
dependence of the friction coefficient on the nominal contact pressure.
Section 4 describes a simple 3D-model used for calculating the depen-
dence of the friction force on the normal load, and Sec. 5 present nu-
merical results and discussion. Section 6 presents the summary and
conclusion.

2. Qualitative discussion

For velocities v≪vm the rubber in (almost) all macro-asperity contact
regions slips relative to the substrate with the same velocity v as the
upper surface of the rubber block. In that case the elastic (or rather
viscoelastic) coupling between the rubber macroasperity contact regions
is not changing in time, and it is basically irrelevant for the friction.
However, for velocities v > vm the rubber friction decreases with
increasing sliding speed. Now, if the driving force is constant, this results
in an unstable branch of the μðvÞ-curve, where the rubber block accel-
erates. If instead the upper surface of the block would be rigidly driven
with a constant velocity v > vm, the bottom surface of the block would
perform stick-slip motion.

With the same arguments, one expects that the rubber in the mac-
roasperity contact regions will perform stick-slip motion for v > vm.
However, due to stochastic fluctuations in the nature of the macro-
asperity contact regions (e.g., due to local fluctuations in the roughness
or surface contamination) one expects not a sharp onset velocity for stick-
slip motion at the macroasperity level, but a distribution of onset ve-
locities. Therefore, we expect that close to the friction maximum, but for
v < vm, some contact regions will perform stick-slip motion. In this case
the motion of a macroasperity contact region depends on the motion of
other macroasperity contact regions. Thus, we expect some correlation in
the local stick-slip events when the velocity is close to the point where the
friction coefficient is maximal. For example, if the rubber in a macro-
asperity contact region slips into a state where the shear force acting on it



Fig. 2. Simple friction tester (schematic) used for obtaining the friction coefficient μ ¼ M '=M as a function of the sliding speed. The sliding distance is measured using
a distance sensor and the sliding velocity obtained by dividing the sliding distance with the sliding time.

Fig. 3. The kinetic friction coefficient as a function of the logarithm of the
sliding speed for rubber tread compound C for the nominal contact pressures
p0 ¼ 0:031 (red squares), 0.091 (green squares) and 0:28 MPa (blue squares),
and the temperature T � 25∘C. The experimental data within the dashed ellipse
correspond to unsteady (accelerated) motion. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of
this article.)
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vanishes, the tangential force lost in this contact region will distribute
itself on the other macroasperity contact regions, where the shear stress
nowmay increase to the point of resulting in local slip, and so on. Clearly,
this lateral coupling, and the way the stress redistributes itself in response
to a local slip at a macroasperity contact region, will depend on the
average separation between the macroasperity contact regions, and
hence on the concentration of the macroasperity contact regions, which
increases with increasing nominal contact pressure.

Here we present a full 3D-model to study in greater detail the
mechanism discussed above, and we show that the lateral coupling be-
tween the macro-asperity contact regions gives rise to a friction coeffi-
cient μ which depends on the load for v close to vm.

3. Leonardo da Vinci experiment

The measured data was obtained using the set-up shown in Fig. 2.
The slider consists of two rubber blocks glued to a wood plate. One
block is at the front of the wood plate and the other at the end of the
wood plate, and the nominal contact area A0 ¼ 10 cm2. The normal
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force is generated by adding lead blocks (total mass M) on top of the
wood plate. Similarly the driving force is generated by adding lead
blocks in the container M' in Fig. 2. In the Leonardo da Vinci experi-
ments the rubber blocks are run in on the substrates on which the
measurements are done.

The sliding distance as a function of time is measured using a distance
sensor. This simple friction tester can be used for obtaining the friction
coefficient μ ¼ M'=M as a function of sliding velocity and nominal con-
tact pressure p0 ¼ Mg=A0. Note that with this set-up the driving force is
specified, and the velocity dependence of the steady-state friction can be
studied only on the branch of the μðvÞ curve where the friction coefficient
increases with increasing speed. In the experiments the motion is either
steady sliding (with small fluctuations in the sliding speed from surface
inhomogeneities), or the block accelerates (but no periodic stick-slip
motion can occur in this set-up). This differs from the theoretical
model used in Secs. 4 and 5, where the velocity of the upper surface of the
rubber block is specified, andwhere in principle the bottom surface of the
rubber block could perform periodic stick-slip oscillations. Nevertheless,
if steady sliding occurs, it does not matter if the driving force or driving
velocity is specified.

All experiments was performed on a tire tread rubber compound. As
substrate we used a concrete surface. Fig. 3 shows the friction coefficient
as a function of the logarithm of the sliding speed. Results are shown for
the nominal contact pressures p0 ¼ 0:031 (red squares), 0.091 (green
squares) and 0:28 MPa (blue squares), and the temperature T � 25∘C.
Note that as the contact pressure increases the friction coefficient de-
creases in a velocity range close to the local maximum (vm � 10�3 m=s).

Before each experiment both the concrete surface and the rubber
block surfaces were cleaned with a soft brush to remove contamination
(wear particles). Fig. 4(a) and (b) show optical pictures of the rubber
blocks after the sliding experiment with the load FN � 300 N at the
highest sliding speed. Note that rubber wear particles, in the form of
cylinder-shaped rolls, can be observed on the front (in the sliding di-
rection) rubber block as demonstrated in Fig. 4(a).

To test the influence of the wear particles on the friction results
presented in Fig. 3 we performed one experiment (for p0 ¼ 0:28 MPa)
where we first increased the velocity from lowest velocity up to the
highest velocity (where the wear rate probably is highest), and then
reduced the sliding speed down to a similar value as in the first mea-
surement. The rubber blocks were cleaned only before the start of the
first measurement, so we expect rubber wear particles to accumulate on
the rubber blocks during the test. Fig. 5 shows the results. The full
squares correspond to measured data when increasing the driving force
(corresponding to increasing sliding speed), while the open squares
correspond to decreasing driving force. Note that there is only a very



Fig. 4. Optical pictures of the rubber blocks after the sliding experiment with
the load FN � 300 N at the highest sliding speed. (a) Refer to the rubber block
located at the front (in the sliding direction) and (b) at the back of the wood
plate. Note that in picture (a) rubber wear particles in the form of cylinder-
shaped rolls can be observed.

Fig. 5. The kinetic friction coefficient as a function of the logarithm of the
sliding speed for rubber tread compound C for the nominal contact pressure
p0 ¼ 0:28 MPa and the temperature T � 29∘C (blue symbols). The green and red
open squares were obtained for the temperatures T � 26∘C and T � 24∘C,
respectively. The full squares correspond to measured data when increasing the
driving force (corresponding to increasing sliding speed), while the open
squares correspond to decreasing driving force. The rubber blocks were cleaned
before the first measurement only. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. The friction model studied in this paper. The sliding block (mass M) is
discretized into N ¼ NxNyNz mass points (mass m ¼ M=N), in the figure indi-
cated as small blocks, which are connected by viscoelastic springs (black lines).
A fraction θ of the mass points at the bottom surface of the sliding block are
connected by frictional coupling to the substrate (pink lines). The upper surface
of the sliding block is connected to a rigid surface with viscoelastic springs. The
rigid surface moves with the velocity v parallel to the substrate. The parameter θ
is proportional to the normal load (see text for more details). (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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small reduction in the friction coefficient during the cycle where the
sliding speed is reduced as compared to the cycle when it is increased.
Hence we conclude that trapped wear particles have only a small influ-
ence on the observed friction.

4. Block-and-spring model

Our model is similar to the Burridge and Knopoff spring-block model
[15] used to study some aspects of earthquake dynamics and boundary
lubrication [16,17]. In this model the top block (the slider) is coupled
with the bottom block (the substrate), assumed to be rigid and fixed, by a
set of frictional contacts, see Fig. 6.

The slider has the shape of parallelepiped of size Nxa� Nya� Nza; its
motion is described by the elastic equation [20,25] (we assume isotropic
slider)
212
∂2u
∂t2 ¼ G1r2uþ G2rðr⋅uÞ; (1)
where uðRÞ is the 3D displacement vector in the slider, R ¼ ðx;y;zÞ, G1 ¼
E=½2ð1þ νÞρ� ¼ c2t and G2 ¼ ð1þ 2νÞG1 ¼ c2l � c2t , E, ν and ρ are the
Young modulus, Poisson ratio and mass density of the slider corre-
spondingly, and cl (ct) is the longitudinal (transverse) sound speed.

For numerical solution of Eq. (1) we discretized it [26], so that the
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slider consists of N ¼ NxNyNz rigid a3-cubes which interact elastically
according to Eq. (1). In the x and y directions we use periodic boundary
conditions. The top surface of the slider is pressed in the z direction by
the normal force (load)

FN ¼ εθP0NxNya2; (2)

where P0 is the maximal nominal contact pressure (the parameters θ and
ε will be discussed below).

The top surface of the slider is driven throughNxNy transverse springs
of elastic constant k ¼ Ea=½2ð1þ νÞ� in the x direction with a velocity v.
The sum of forces in these springs is the friction force Ff . The friction
coefficient is then defined as μ ¼ hFfi=FN, where h…i is the time average
in the steady state regime.

The bottom surface of the slider is coupled by frictional contacts with
the base; these contacts describe the macroasperity contact regions.
Namely, the slider is coupled with the substrate by Nc ¼ θNxNy frictional
contacts with a random spatial distribution. For a contact of rough surfaces
the dimensionless parameter θ � 1 is directly proportional to the load.
The force acting on the i'th block to which the contact is attached, de-
pends on the block velocity vi: it increases at small v, reaches a maximum
around some vm and then decreases. To be specific, we use the depen-
dence found experimentally [24]:

f
�
vi; v�i

� ¼ εf0expð�cξiÞsignðviÞ þ mηcvi ; (3)

ξi ¼
�
log10

�jvij
�
v�i
��2

; (4)

where f0 ¼ a2τf , τf is the shear stress at the macroasperity, c is a nu-
merical constant, m ¼ ρa3 is the mass of the a3-cube, ηc is the viscous
damping due to motion of the macroasperity over the substrate, and the
parameters v�i are randomly distributed around some value vm.

In simulation we used Nx ¼ Ny ¼ 15 (or Nx ¼ Ny ¼ 30 for Fig. 9) and
Nz ¼ 10 so that the slider consists of N ¼ 2250 (or N ¼ 9000) blocks
(a3-cubes), each of linear size a ¼ 0:1mm andmassm ¼ 10�9 kg, and the
interface consists of maximum NxNy ¼ 225 (or 900) contacts. The elastic
block (which we denote as “rubber”) has the mass density ρ ¼ 103 kg/
m3, the Young modulus E ¼ 10 MPa and the Poisson ratio ν ¼ 0:5. The
maximal nominal pressure is P0 ¼ 106 Pa.

Because we drive the slider by the external force, the energy is
continuously pumped into the system and has to be removed to avoid
Fig. 7. Dependence of the friction coefficient μ on θ for two values of the
driving velocity: v ¼ 3� 10�4 m/s (black circles) and v ¼ 10�3 m/s (blue di-
amonds). (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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infinite increasing of the slider temperature. For this purpose, between
the nearest neighboring blocks i and j we added the viscous damping
force fij ¼ �mηðvi � vjÞ with the damping coefficient η ¼ 0:1ω0, where
ω0 ¼ cl=a ¼ 106 s�1 is the characteristic frequency of the slider, so that
the system dynamics is underdamped. Another channel of dissipation is
the viscous damping ηc in Eq. (3) because of motion of the macroasperity
over the substrate; we took ηc ¼ 0:1ω0 as well.

The frictional interface is parameterized as follows [24]: τf ¼ 6:5�
106 Pa, c ¼ 0:1, and the parameters v�i are randomly distributed around
the value vm ¼ 1 mm/s (in detail, the values log10v�i are uniformly
distributed within the interval ½log10vm � δ; log10vm þ δ� with δ ¼ 0:5).

The “scaling” parameter ε in Eqs. (2) and (3) was introduced because
of the following technical problem [19,26]. The characteristic time scale
of the slider is τ0 ¼ 2π=ω0 � 6:28� 10�6 s, while the characteristic time
scale of the frictional contacts is τc ¼ v0m=f0 � 1:54� 10�11 s which is
more than five orders of magnitude smaller. Using the value ε ¼ 10�2,
we were able to simulate the system within a reasonable computer time
(of course, we checked that changing of ε does not modify our results, at
least qualitatively).

During simulation we saved the total driving force f ðtÞ ¼
ðNxNyÞ�1PNxNy

i¼1 k½vt � xiðtÞ�, where xiðtÞ is the coordinate of the ith block
at the top surface of the slider, and then calculated the friction coefficient
for the steady sliding.

5. Simulation results and discussion

The simulation results are presented in Figs. 7 and 8. Fig. 7 shows that
for the lower driving velocity v ¼ 3� 10�4 m/s the friction is almost
independent of load, while for v ¼ vm ¼ 10�3 m/s the friction may
decrease by more than 15% when the load grows, in a good agreement
with the experiment.

Analyzing the simulation results in more detail, we found the
following explanation of this effect. Let v be the velocity of the drive. A
single (isolated) contact i moves with a constant velocity v if v < v�i , and
hence experiences the constant friction force f ðv;v�i Þ. However, if v > v�i ,
its motion may become unstable, and the contact will undergo stick-slip
motion. In the latter case, the contact accelerates during slip, and the
force drops, so the averaged force from this contact is lower than f ðv;v�i Þ;
the effect is the larger, the lower is the damping parameter ηc. For a set of
non-interacting contacts, the driving force in the steady state is approx-
imately equal to the sum of the forces from all contacts, and thus slightly
Fig. 8. Friction force Ff=θ versus time for two values of θ, θ ¼ 0:04 (blue) and
θ ¼ 0:498 (red curve), for the driving velocity v ¼ 10�3 m=s. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)



Fig. 9. Dependence of the friction coefficient μ on θ for three values of the
driving velocity: v ¼ 4� 10�4 m/s (open squares), v ¼ 7� 10�4 m/s (red cir-
cles) and v ¼ 10�3 m/s (blue diamonds). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of
this article.)
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smaller than hf ðv;v�i Þi, because some contacts with v�i < v undergo stick-
slip. This situation corresponds to the θ→0 limit (low load), when the
contacts are far away from each other. However, at large θ (load) some
contacts occur close to one another, and if one of them undergoes stick-
slip, it may stimulate the neighboring contacts to stick-slip as well—the
number of stick-slip contacts increases with θ, and the total friction force
decreases.

Fig. 8 shows the friction force normalized by the concentration of
frictional contact region, Ff=θ, as a function of time for two values of θ,
θ ¼ 0:04 (blue) and θ ¼ 0:498 (red curve). The results are for v ¼
10�3 m=s. Note that for the large coverage case global stick-slip occurs.
In the experiments we do not observe so large fluctuations (and no pe-
riodic stick-slip oscillations) in the friction force as observed in Fig. 8 for
large load. We believe this is due to the small system size we use, and in
particular to the fact that in our model the macroasperity size is the same
Fig. 10. The sliding speed as a function of time with the driving velocity v ¼
10�3 m=s, for the case of only two frictional contact areas with the maximum in
the friction at v�1 ¼ 4:75� 10�4 m=s (blue curve) and v�2 ¼ 2:09� 10�3 m=s (red
curve). In (a) the frictional contacts occur on two nearby mass points (separated
by one lattice constant), while in (b) they are separated by seven lattice con-
stants. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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as the discretization length a. In order to get the elastic continuum limit
correctly described, one should instead keep the size of the macroasperity
contact regions fixed (say linear size R), and choose a discretization
length a much smaller than R (i.e., a=R→0). Thus in a more accurate
treatment we expect negligible global (on the block-level) stick-slip, at
least as long as the macroasperity contact area is not close to the nominal
contact area (i.e., θ ¼ 1). In other words, because of our small system size
and the assumption a ¼ R, the slip at different locations on the surface
are strongly coupled, but for a larger system and with R≫a the different
regions at large separation are weakly coupled and can slip more un-
correlated, which will reduce (due to self-averaging) the stick-slip on the
block-size scale to a negligible value. In Fig. 7 we present the time-
averaged friction force acting on the sliding block.

For the small system we study, as long as the drive velocity v is large
enough that some frictional contact regions has a velocity maximum
below v, we expect the macroscopic stick-slip to be non-negligible. This is
consistent with the rather abrupt change we observe as v increases from
below 10�3:5 m=s � 3:16� 10�4 m=s (where steady sliding is observed)
to above this value. This is illustrated in Fig. 9 which shows that even for
v ¼ 4� 10�4 m=s the friction force is strongly reduced compared to the
v ¼ 3� 10�4 m=s case in Fig. 7.

The strong coupling between the frictional contact regions within our
sliding unit (with Nx ¼ Ny ¼ 15) is also illustrated in Fig. 10. We show
the sliding speed as a function of time with the drive velocity v ¼
10�3 m=s, for the case of only two frictional contact areas, with the
maximum in the friction at v�1 ¼ 4:75� 10�4 m=s (blue curve) and v�2 ¼
2:09� 10�3 m=s (red curve). In the top-figure (case (a)) the frictional
contacts occur on two nearby mass points (separated by one lattice
constant), while in the bottom figure (case (b)) they are separated by
seven lattice constants. Note that because of the elastic coupling between
the contact regions, the contact region with v�2 ¼ 2:09� 10�3 m=s (red
curve) performs stick-slip like motion in spite of the fact that it would
move with a constant velocity if it would be the only contact region at the
interface. In case (a), where the contact regions occur on nearby mass
points, the motion of the two contact areas are fully synchronized (both
contact regions undergo large velocity slip at the same time), while in
case (b) the contact region with v�2 ¼ 2:09� 10�3 m=s (red curve) un-
dergoes stick-slip at a higher frequency, and never at exactly the same
time as for the v�1 ¼ 4:75� 10�4 m=s contact region (blue curve) (the
peaks in the velocity, for those slip events where the two contact regions
slip at nearly the same time, are separated by roughly the time it takes for
an elastic wave to propagate a distance corresponding to 7 lattice
constants).

6. Summary and conclusion

The experimental results in Refs. [23] and [22] and also above show
that the rubber friction coefficient μðvÞ, in a narrow velocity region
around the velocity where μðvÞ is maximal, depends on the nominal
contact pressure p0, even when the sliding speed is so low that frictional
heating is unimportant. We attribute this effect to the coupling between
the macroasperity contact regions. We have presented a model which
shows that the lateral coupling between the macroasperity contact re-
gions can enhance stick-slip of the contact regions. Since the average
distance between two nearby macroasperity contact region decreases
when the load increases, the lateral coupling increases, and the friction
coefficient decreases, as the load increases.

The mechanism for the dependency of the friction coefficient on the
load considered here is very general, and is also relevant for non-rubber
materials, i.e., for any multi-contact interface. The stick-slip of the
macroasperity contact regions should manifest itself in the power spec-
trum of the block velocity, and in the acoustic power spectrum, so
studying these quantities should be one way to test the hypothesis pre-
sented above. Simulations for larger systems and different sets of pa-
rameters are also desirable, and we plan to proceed in this way in future.
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