Sol-gel organic-inorganic hybrid materials, containing lanthanide complexes with polydentate acyclic and cyclic ligands: synthesis and spectral-luminescent properties

S.S. Smola, O.V. Snurnikova, E.N. Fadeyev, N.V. Rusakova

Department of Chemistry of Lanthanides, A.V. Bogatsky Physico-Chemical Institute, Nat. Acad. of Sci. of Ukraine. Lustdorfskaya doroga, 86, 65080, Odessa, Ukraine. E-mail: sssmola@gmail.com Sm

Emission spectra:

Tm

➤atom-like, cover the entire visible/NIR range Iong lived excited states

Тb

- Number of metal-ion sites
- Composition of the 1st coordination sphere
- Site symmetry
- Strength of the Ln-L bond
- Solution state of the Ln(III) ion
- Donor acceptor distance

510540 570 600 630 450480660 nm

Eu

Main problems are:

 weak 4f-absorption – sensitization by organic ligand needed

 quenching processes, particularly high-energy vibrations (O-H, C-H)

Sensitized lanthanide luminescence

Organic ligand acts as a sensitizer, transfers excitation energy to the Ln(III) ion and provides protection from quenching solvent interactions, thermodynamic and kinetic stability

The strategy for luminescent Ln(III)-based organic-inorganic hybrid materials preparation

Modification of aminopolycarboxylic acids

DTPA-APTMS

Compound	¹ H NMR δ , ppm (D ₂ O, pH>10)			ESI-MASS, [M] ⁻
	-CH ₂ - (Gly)	-CH ₂ - (En)	-CH ₂ - (n-Pr)	
EDTA-APTMS	3.08 (2 H) s 3.52 (6 H) s	3.15-3.35 (4 H) m	0.73 (2 H) t 1.77 (2 H) m 3.00 (2 H) t	392
DTPA-APTMS	3.33 (8 H) s 3.49 (2 H) s	2.97 (4 H) t 3.09 (4 H) t	0.59 (2 H) t 1.67 (2 H) m 2.90 (2 H) t	493

Complex	1 H NM	R δ, ppm (D_2C) , pH>10)	ESI-MASS,	Complex
	-CH ₂ - (Gly)	-CH ₂ - (En)	-CH ₂ - (n-Pr)	[M] ⁻	
Lu-EDTA-APTMS	3.23-3.68 (8 H) m	3.01 (2 H) t 3.14 (2 H) t	0.79(2 H) t 1.81 (2 H) m 3.04 (2 H) t	564	Tb-EDTA-APTMS
Lu-DTPA-APTMS	3.29-3.70 (10 H) m	2.55 (2 H) t 2.72 (2 H) t 2.94 (2 H) t 2.97 (2 H) t	0.71 (2 H) t 1.71 (2 H) m 3.01 (2 H) t	665	Tb-DTPA-APTMS

Sol-gel synthesis of Ln(III)-based hybrid materials

Si(OEt)₄ 1. HCl 2. NH₄OH

Ln-L-APTMS

Ln = Eu, Tb, Yb, LuL = EDTA, DTPA

SEM-images of Eu-DTPA-APTMS/SiO₂ sample

Luminescent properties of Eu-DTPA-APTMS/SiO₂

9

Luminescent properties of Eu-DTPA-APTMS/SiO₂

Excitation spectra of Eu-DTPA and Eu-DTPA-APTMS/SiO₂ ($\lambda_{em} = 615$ nm)

Concentration effects

Ratio SiO ₂ /EuL	Molar fraction of EuL	Fluorescence intensity, a.u.	4f-Luminescence intensity, a.u.
200:1	0.50	1.26	0.81
100:1	0.99	1.31	1.50
50:1	1.96	1.67	1.81
25:1	5.66	1.86	4.52
10:1	9.09	3.47	9.40
EuCl ₃ 50:1		1.00	1.00

Luminescence of Tb(III)-based hybrid materials

Emission of Tb-Dtpa and Tb-Dtpa-Aptms/SiO₂ ($\lambda_{exc} = 340$ nm)

		Compound	I _{4f} , %	Compound	I _{4f} , %
		Eu-EDTA	91	Tb-EDTA	89
		Eu-DTPA	100	Tb-DTPA	100
0	\int	Eu-EDTA-APTMS-SiO ₂	78	Tb-EDTA-APTMS-SiO ₂	67
		Eu-DTPA-APTMS-SiO ₂	83	Tb-DTPA-APTMS-SiO ₂	71

$$Ln:SiO_2 = 1:50$$

Functionalization of p-tert-butylcalix[4]arene

Ln-TBC-TESPIC

Luminescence of Ln-TBC-based hybrid materials

Compound	τ, μsec	Compound	τ, μsec
Eu-TBC	350	Tb-TBC	370
Eu-TBC-TESPIC/SiO ₂	192	Tb-TBC-TESPIC/SiO ₂	650

Photostability of Ln(III)-containing hybrid materials

Acknowledgements

Dr. E. Trunova, Dr. O. Berejnytskaya V.I. Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine

A. Rogovtsov, TOV NanoMedTech

Financial support

National Academy of Sciences of Ukraine