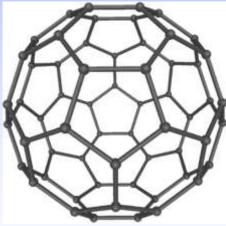


Nanocluster production by pulsed laser ablation in liquids

Yevhen Shynkarenko, I. Blonskii, A. Dmytruk


First year PhD Student of IOP of NAS of Ukraine

Atomic nanocluster

- Consist of $2 10^3$ atoms
- Size 1 ÷ 100 Å
- Molecular behavior
- Additional atom changes both geometric and electronic structure
- Cluster stability is variable
 - Electronic structure
 - Number of atoms
 - Size
 - Isomerism
 - Stoichiometry

Atomic nanoclusters

- Applications:
 - Catalysis
 - Biolabeling
 - Surface-enhanced Raman scattering
 - Metal-enhanced fluorescence
- Production methods:
 - Chemical reactions
 - Condensation on a substrate
 - Irradiation of a solid
 - Laser Ablation (LA)

(CdSe)₃₃. (CdSe)₃₄

Ag (0,5 – 17 nm) with Qy =0.09

- 1. Kasuya A, et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. *Nature materials*. 2004
- 2. Park YS, Dmytruk AM, Dmitruk IM, et al. *The Journal of Physical Chemistry C*. 2010
- 3. Kravets VV, Culhane K, Dmitruk IM, Pinchuk AO. Proceedings of SPIE.Vol 8232.; 2012

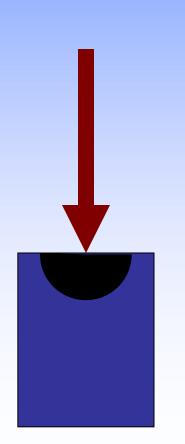
Þ

Laser ablation

- Laser Ablation is removal of the material because of the incident light
- Temperature 3000-10000 K

 Pressure at ablation point 100-1000 bars

http://www.strath.ac.uk/space/research/missionsystems/asteroiddeflectiontechnologies/laserablationexperiments/


Þ

Pulsed laser ablation

CW/microsecond

Boiling

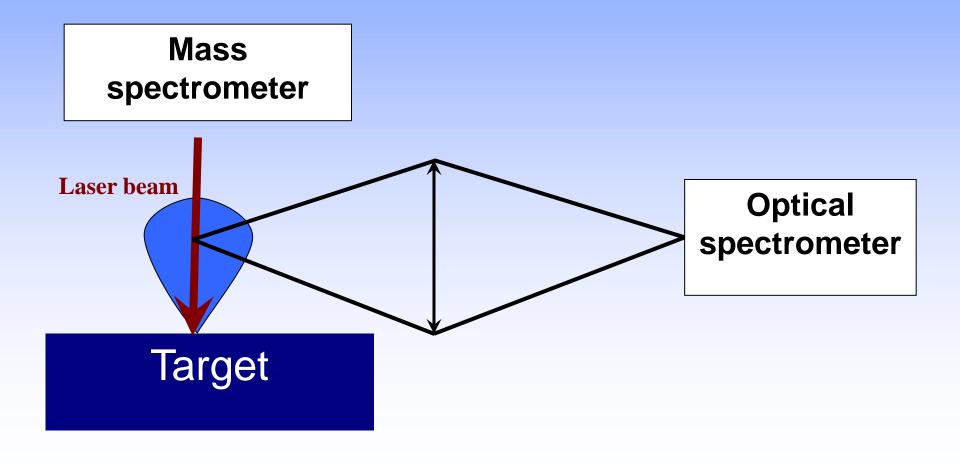
Nanosecond •Vaporization •Shock wave propagation

Pico-, FemtosecondVaporizationIonizationNonlinear absorption

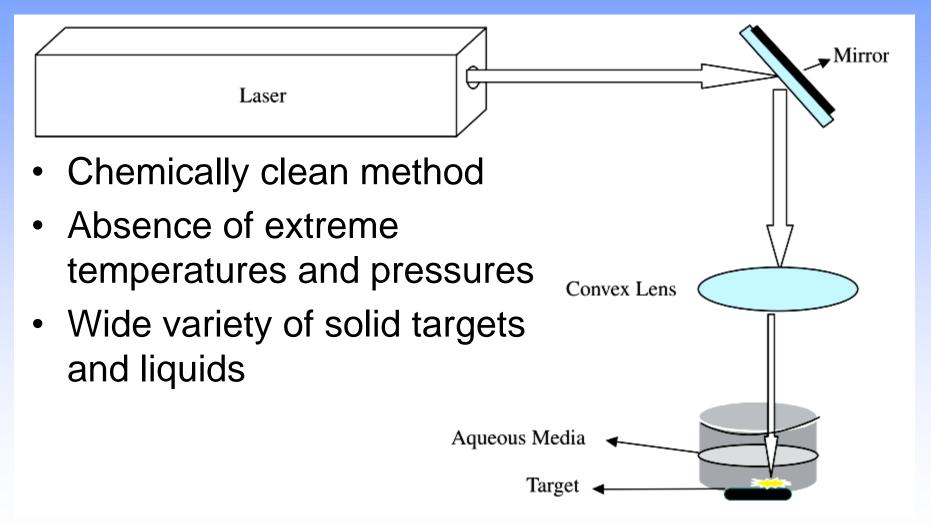
Pulsed laser ablation

Film deposition

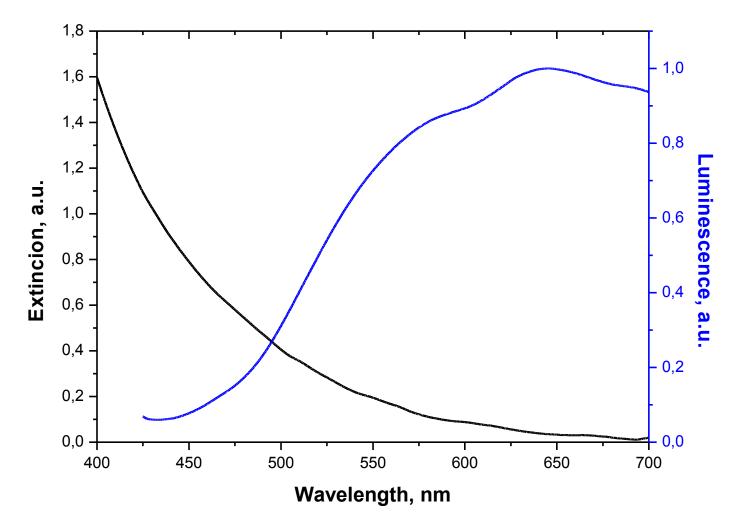
Surface cleaning


Substrate Target Target

Pulsed laser ablation


Material characterization

PLA in liquids to produce nanocluster



S. C. SINGH and R. Gopal, vol. 40, no. 4, pp. 724–730, 2008.

Results: Cd-Se

Summer school

CdSe nanoparticles in water were stabilized by L-cystein, (pH 10)

Results: Ag in water

OLS

Summer school

Future perspectives and tasks

- PLA in liquids has great potential due to liquid and material variety
- In order to achieve smaller particles' sizes and dispersion, laser pulses parameters should be optimized

Our main future task is to obtain "magic sized" clusters

Conclusions

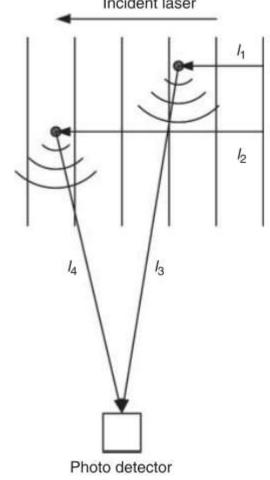
- Nanoclusters were successfully produced by pulsed laser ablation
- Wide absorption peak is an evidence of nanoparticles formation with various sizes both of Ag and CdSe
- Luminescence and absorption spectra investigations should be extended to UV region

THANK YOU FOR ATTENTION

Acknowledgements Ivan Blonskii Andrij Dmytruk

Femtosecond laser complex

- Main parameters
 - Wavelength 800 nm;
 - Pulse duration 130 fs;
 - Maximum pulse energy 2,5 mJ;
 - Maximum peak power 2*10¹⁰ W;
 - Maximum power density 5×10¹⁴ W/cm²;


- Laser irradiates suspension of nanoparticles
- Brownian motion causes fluctuation of scattered light intensity
- The characteristic time* of this fluctuation is related to diffusion coefficient

 $\tau = (2Dk)^{-1} D = KT/$

$$\iota = (2D\kappa_s) / 6\pi\eta R$$

Autocorrelation function is used to determine characteristic time

