

Institute of Physics National Academy of Sciences of Ukraine

STM-investigation of adsorption of long chain aliphatic compounds on atomically flat surfaces

A.I. Senenko

STM-AFM team

- A.A. Marchenko
- V.V. Cherepanov
- D.V. Stryzheus
- A.G. Naumovets

Microprocessor Transistor Counts 1971-2011 & Moore's Law

EPITAXY

"επι" — *on*, "ταξισ" — *order*

Adsorption of atoms

Organic adsorbates

?

Investigated compounds

Aims:

- the study of monolayer films of long chain aliphatic compounds (acids) on atomicallyflat substrate (graphite);
- the elucidation of influence of functionalization on monolayer structure (carboxylic and boron groups)

Investigated compounds

1982 – Invention of the Scanning Tunneling Microscopy (Noble prize 1986)

6

Principle of STM in liquid-solid interface

Advantages

- high performance of the method
- a diversity of adsorption systems
- the possibility of investigation of biological objects

Intramolecular resolution of C48Hos on graphite

8

Schematic model of lamella formation

enlighted STM contrast

O -CH₂

Highly Oriented Pyrolytic Graphite

Two kinds of carbon atoms in the first layer

- atoms have neighbours in the second layer
- atoms don`t have the neighbouring atom in the second layer

10

Intramolecular resolution of C₂₀H₄₀O₂ on Monolayer of Graphite 2 on graphite

Dimer structure of C₂₀H₄₀O₂ **on graphite**

Schematic model of dimer formation

CH₂-group

COOH-group

Monolayer of C₁₆H₃₃B(OH)₂ on graphite

Monolayer of C₁₆H₃₃B(OH)₂ on graphite

(15)

Monolayer of C₁₆H₃₃B(OH)₂ on graphite

Conclusions

- highly ordered lamella like monolayers of arachidic acid were obtained on graphite by the deposition from n-tetradecane. Lamellas are composed by dimers. Association of molecules in the dimers is due to interaction between COOH-groups (in contrast to n-alkane monolayers, for which dimmerisation was never observed).

Conclusions

- highly ordered monolayers of boron acid were obtained on graphite by the deposition from n-tetradecane. Monolayers are formed by dimers (B(OH)₂-groups are responsible for association of molecules within the dimers).
- molecules of solvent n-C₁₄H₃₀ can be coadsorbed with molecules of acid at temperature significantly higher than the monolayer melting point of n-tetradecane on graphite.

Perspectives

- 1) Templating of atomically flat surfaces by functionalized aliphatic compounds
- 2) Surface modification of Au-nanocrystals("nanoprisms") for incorporation in biologicalcells
- 3) Control of plasmon resonance in Aunanocrystals (by adsorbed monolayers)
 4) Control of lateral conductivity in organic monolayers (realization of field transistor effect)

Growth of Au nanoprisms

In collaboration with Dr. Estrella-Llopis and T. Borodinova Institute of biocolloidal chemistry (Kiev, Ukraine)

Control of lateral coonducivity in organic monolayers (field transistor effect)

Problems: - contacts

- creation of long range ordered structure

Acknowledgements

O. Varzatskiy

Vernadsky Institute of General and Inorganic Chemistry NAS of Ukraine for synthesis of hexadecyl boron acid

Department of Physics and Astronomy of NAS of Ukraine for financial support

Thank you!

The operating regimes of STM

The mechanism of the STM

Reconstruction of Au(111) substrate

Height

A Diffusion of "magic"-clusters

Highly Oriented Pirolitic Graphite

Au (111)

Densely packing

Monolayer of n-octane acid $C_8H_{16}O_2$ on Au(111)

180×180 nm², I_t = 0,4 nA, U_t = 0,6 V

Monolayer of Dodecanthiol C₁₂H₂₅SH on Au(111)

Packing $(\sqrt{3} \times \sqrt{3})$ R30°, superstructure c(4×2)

Packing $(\sqrt{3} \times \sqrt{3})$ R30°, superstructure c(4×2) of n-octane acid C₈H₁₆O₂ on Au(111)

Monolayer of n-octane acid $C_8H_{16}O_2$ on Au(111)

180×180 nm², I_t = 0,4 nA, U_t = 0,6 V

