National Academy of Science of Ukraine Institute for Scintillation Materials

Doped ion redistribution in Y₂SiO₅:Pr³⁺ nanocrystals detected by spectroscopic techniques

V.V.Seminko, A.A. Masalov, Yu.V.Malyukin

Nanotechnology: from fundamental research to innovations August 26 - September 2, 2012, Bukovel, Ukraine

Rare-earth doped nanocrystals for luminescent applications

Luminescent properties of RE-doped bulk and nanocrystals must be similar but there are some unexpected pitfalls...

Influence of doped ions segregation on the luminescence properties of nanocrystal

bulk crystal – the role of segregated doped ions in luminescence processes is negligible

3

nanocrystals - ?

Simplified energy scheme of Pr³⁺ in Y₂SiO₅ bulk and nanocrystals

Nanotechnology: from fundamental research to innovations, August 26 - September 2, 2012, Bukovel, Ukraine

Abnormal strong ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ concentration quenching in Y₂SiO₅:Pr³⁺ nanocrystals

Cooperative absorption as a sign of Pr³⁺ pair formation in Y₂SiO₅:Pr³⁺ nanocrystals

fig.5. Y₂SiO₅:Pr³⁺ nanocrystals excitation spectra

Segregation of doped ions in Y₂SiO₅:Pr³⁺ nanocrystals?

$$R_{Pr3+} = 1.01 \text{ Å}, R_{Y3+} = 0.89 \text{ Å}$$

 $\frac{G\Delta\Omega}{\pi r^3}$ elastic stress created by the point defect

$$E_{def} = \frac{2G^2 (\Delta \Omega)^2}{3\pi K R^3}$$

lattice distortion energy

 $E_{def}(Y_2SiO_5:Pr^{3+}) \sim 0.03 \text{ eV}$

K, G – bulk and shear modulus, R – radius of doped ion, $\Delta\Omega$ – ionic volume difference

$$C_{surf}/C_{bulk} \approx e^{-E_{def}/kT} \approx 4$$

So, the segregation concept predicts Pr³⁺ concentration in the nearsurface layer four times greater than in the bulk

Nanotechnology: from fundamental research to innovations, August 26 - September 2, 2012, Bukovel, Ukraine

Tracing the process of Pr^{3+} segregation in Y₂SiO₅:Pr³⁺ nanocrystals. Luminescence spectra.

Tracing the process of Pr^{3+} segregation in Y₂SiO₅:Pr³⁺ nanocrystals. Decay curves.

Verification of segregation concept. Y₂O₃:Pr³⁺

Segregation as a key to Iuminescence properties modification

Nanotechnology: from fundamental research to innovations, August 26 - September 2, 2012, Bukovel, Ukraine

Segregation – determined redistribution of luminescence intensities in YVO₄:Er³⁺, Yb³⁺ nanocrystals

Nanotechnology: from fundamental research to innovations, August 26 - September 2, 2012, Bukovel, Ukraine

Conclusions:

For the first time, strong temperature controlled segregation of dopant ions in Y_2SiO_5 : Pr^{3+} , Y_2O_3 : Pr^{3+} and YVO_4 : Er^{3+} , Yb^{3+} nanocrystals was detected by means of spectroscopic techniques. This effect can manifest itself as in more intensive concentration quenching of luminescence, so in modification of luminescence properties of doped nanocrystals.

Thank you for attention!