ENHANCEMENT OF IR ABSORPTION OF BIOMOLECULE ADSORBED ON SINGLE WALL CARBON NANOTUBES AND GRAPHENE NANOSHEETS

<u>Anna Rynder^{1,2}</u>, Galyna Dovbeshko¹, Olena Gnatyuk¹, Olena Fesenko¹, Oleg Posudievsky³

¹ Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. E-mail: <u>gd@iop.kiev.ua</u>

 ² National University of "Kyiv-Mohyla Academy", Kyiv, Ukraine. E-mail: <u>rynder@ukr.net</u>
³ L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. E-mail: <u>posol@inphyschem-nas.kiev</u>

Bukovel, 2012

Bukovel, 2012

Summer school

Outline

- Surface enhanced spectroscopy SEIRA;
- Characterization of single wall carbon nanotubes (SWCNT) and graphene nanosheets;
- Enhancement of IR absorption by molecule (thymine) adsorbed on SWCNT and graphene nanosheets;
- Possible mechanism of enhancement of IR absorption for molecule adsorbed on the stated carbon nanomaterials;
- Conclusions.

Surface enhanced infrared absorption

- The increasing of electromagnetic field near rough metal surface and island metal films (*electromagnetic mechanism*);
- 2) The increasing of the dipole transition moment of the adsorbed molecules (*chemical mechanism*).

Dovbeshko G.I., Fesenko O.M., Chegel V.I., Shirshov Y.M. "Enhancement of optical transition near rough metal surface", Semiconductor physics, quantum electronics and optoelectronics, v.7, №4, 2004, p.215-225

Could carbon nanomaterials be used as enhancing substrate for IR absoption?

What is more efficient: SWCNT or graphene?

What is the mechanism of enhancement?

Characterization of SWCNT's

 $v(cm^{-1}) = \frac{223.75}{D_1(nm)} \rightarrow \text{ one nanotube}$

Transmission electron microscope (TEM)

bundle of $\leftarrow v(cm^{-1}) = \frac{234}{D_2(nm)} + 10$ nanotubes

Graphene nanosheets

Graphene is a monolayer of carbon atoms packed into a two-dimensional (2D) honeycomb crystal structure.

IR spectra of thymine with SWCNT's

G. Dovbeshko, O. Gnatuyk, O. Fesenko, A. Rynder, O. Posudievsky Enhancement of IR absorption of biomolecules adsorbed on single wall carbon nanotubes and graphene nanosheets// Journal of Nanophotonics (2012) in print

Ya. Shtogun, L. Woods, G. Dovbeshko "Adsorption of Adenine and Thymine and Their Radicals on Single-Wall Carbon Nanotubes" J. Phys. Chem. 2007, 111, p.18174-18181

IR spectra of thymine with graphene

G. Dovbeshko, O. Gnatuyk, O. Fesenko, A. Rynder, O. Posudievsky Enhancement of IR absorption of biomolecules adsorbed on single wall carbon nanotubes and graphene nanosheets// Journal of Nanophotonics (2012) **in print**

Calculated enhancement factor

Thy	Thy+Graphene		Assignment	Thy+SWCNT		Assignment
(on the Au)	Wavenumber, cm ⁻	g ^{2(*)}		Wavenumber, cm ⁻¹	g ^{2(*)}	
1709	1706	1,9	C ₂ =O	1709	1,8	C ₂ =O
1663	1678	0,9	C ₄ =O	1659	1,4	C ₄ =O
1550	1550	1,4	C=C	1550	2,3	C=C
1481	1482	1,3	N₁-H def	1481	2,7	C-H ₃ def
1440	1443	1,2	N ₁ -H def, C ₃ -H def	1441	4,0	N ₁ -H def
1427	1420	1,4	C ₃₋ H def	1421	5,3	N ₁ -H def, C ₃ -H
1364	1366	3,0	N ₃ -H def	1364	4,0	N ₃ -H def.
1241	1241	1,7	C-C	1241	1,7	C-C
1212	1202	1,3	C ₆ -H def , C ₂ -N ₃ str.	1201	2,3	C_6 -H def, C_2 - N ₃ str.
1025	1022	1,5	CH, C-OH	1024	4,2	C-H, C-OH
978	979	3,7	N-C ₂ ring-bending	980	4,1	N-C ₂ ring- bending
920	934	2,6	γ-CH	933	5,0	γ-CH
842	829	2,0	N ₃ -Η, γ-C ₂ =Ο	831	2,6	N_3 -H, γ -C ₂ =O
812	811	2,2	N ₁ -H, γ-C ₂ =O, C ₄ =O	810	2,7	N_1 -H, γ -C ₂ =O, C ₄ =O
758	757	1,7	Skeletal ring mode	757	2,5	Skeletal ring mode
743	741	1,7	C ₄ =O			
				617	2,3	γ- C ₄ =Ο
554	556	2,0	N-H	557	4,2	β- C ₄ =O
474	476	1,9	N-H	475	2,8	α-ring-bending

The IR spectra of thymine, thymine with graphene and graphene oxide

G. Dovbeshko, O. Gnatuyk, O. Fesenko, A. Rynder, O. Posudievsky Enhancement of IR absorption of biomolecules adsorbed on single wall carbon nanotubes and graphene nanosheets// Journal of Nanophotonics (2012) in print

Factor of enhancement of Thy on graphene and graphene oxide

Thymine	Thy+Graphene		Thy+Graphene		Assignment
	Oxide				
	position	Enh.	position	Enh.	
		factor		factor	
1798	1799	2,0	1802	1.4	C ₄ =O for isolated Thy
					molecules
1709	1706	2.4	1706	1.9	C ₂ =O
1550	1553	3,2	1550	1.4	C=C
1481	1480	2,6	1482	1.3	N ₁ -H def
1406	1405	3,0	1397	1.6	C-N str.
1364	1363	3,0	1366	1.5	N ₃ -H def
1296	1287	3,0	1284	2.2	C ₆ -H def
1212	1210	2,3	1202	1.4	C ₆ -H def , C ₂ -N ₃ str.
1025	1023	3,0	1022	1.5	СН, С-ОН
978	977	3,0	979	3.6	N-C ₂
924	923	1.2	933	2.6	ү-СН

Possible mechanism of SEIRA effect

 Local field enhancement in the near-field zone of the finite-length metallic SWCNTs.

G.Ya. Slepyan, M.V. Shuba, S.A. Maksimenko, C. Thomsen, A. Lakhtakia et. al Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes// Phys. Rev. B, **2012**. Vol.85.P. 165435.

G.Ya. Slepyan, M.V. Shuba S.A. Maksimenko, C. Thomsen, A. Lakhtakia. Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment // Phys. Rev. B, 2010. Vol. 81. P. 205423.

Dependence of the enhancement factor on wavenumbers

G. Dovbeshko, O. Gnatuyk, O. Fesenko, A. Rynder, O. Posudievsky Enhancement of IR absorption of biomolecules adsorbed on single wall carbon nanotubes and graphene nanosheets// Journal of Nanophotonics (2012) in print

Confocal microscopy images

Thymine on glass

Thymine on Au

Graphene on glass

Conclusions

- Graphene and SWCNT could be used as an enhancing substrate for IR spectroscopy;
- The enhancement factor for Thymine adsorbed on SWCNT (6) is greater than that on graphene nanosheets (4);
- Mechanism of enhancement of biological molecules adsorbed on nanostructured carbon substrates seems to have chemical and electromagnetic nature.

Acknowledgements

We thank for financial assistance

- Project STCU 5525 (2012-2013);
- Ukrainian-German project No. M366 (2011-2012);
- Russian-Ukrainian Project (2012-2013);
- Nano twining project (No 294952) of the FP7.

Thank You for Attention !

ISS Nanotechnology Aug 26- Sep2, 2012, Bukovel, Ukraine