

Інститут хімії поверхні ім. О.О. Чуйка НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ

Gd-containing magnetic nanoparticles for neutron capture therapy and magnetic resonance imaging

Ie. V. Pylypchuk

A.L. Petranovska, P.P. Gorbyk

26.08-2.09 2012 Bukovel

Neutron capture therapy – basic principles (1)

Рис. 3. Результаты ГНЗТ остеосаркомы: а — до облучения. Мелкоклеточная остеосаркома. Окраска гематоксилином и зозином, ×400; 6 — после облучения. Тотальный некроз опухолевой ткани. Патоморфоз IV степени. Окраска гематоксилином и зозином, ×400

http://www.irsovet.ru/publish/numer3-2007.html

Neutron capture therapy – basic principles (2)

3. Therapy

diagnostics

For nanocomposites based on magnetite selective delivery and concentration in the tumor or organ can be achieved by a magnetic field.

Purpose - synthesis of nanocomposites are promising for use in neutron capture therapy, magnetic resonance imaging.

Core-shell magnetic nanostructures

Fe_3O_4/Gd_2O_3 $Fe_3O_4/GdFeO_3$ nanostructures-Synthesis and properies

To a solution of bivalent and trivalent iron salts (1M 2M) was added a solution of 1 mol salt Gd. Solution slowly precipitated with ammonia with vigorous stirring at 80-90 ° C. The precipitate was filtered, washed with distilled water to pH = 7.

Fig. 1. XRD patterns of magnetite, doped by Gd^{3+} : 1 – sample synthesied at T = 20 ° C; 2 – sample annealed at 1000 ° C

б

-3

30-

-30-

 $\sigma, \Gamma c^* c M^3/\Gamma$

XPS study of Fe_3O_4/Gd_2O_3 nanocomposites

Gd3+

1

130

2

130

3

130

Z

135

Gd-O-Fe

135

135

Fe2p XPS from samples Fe₃O₄/Gd, obtained at different temperatures (1, 2), 3 double contain of Gd³⁺

In the Eb = 708.5 eV signal is present on the suboxide of iron, which disappears in the spectrum of 2 (Fig. 3) during annealing. In the Eb = 712.1 eV recorded signal, which also can be associated with both phase FeOOH, and with the contribution of the satellite structure and is proportional to the magnetic characteristics.

a – Gd4d, b – O1s XPS from samples Fe_3O_4/Gd , obtained at different temperatures

On the surface of magnetite nanoparticles gadolinium is present in the trivalent state Gd³⁺. E_{h} Gd4d5/2 = 141.3 and 142.7 eV, corresponding to Gd₂O₃, and E_{h} $Gd4d5/2 = 144.7 \text{ eV} - Gd(OH)_3$. At the E_h Gd4d5/2 = 139.9 eV signal is present, which can be linked to a bond Gd-O-Fe.

T=20 °C

Fe₃O₄ / GdFeO₃ nanostructures-Synthesis and properies

Proceeding from molar ratio Fe^{2+} : $Fe^{3+} = 1:2$ for magnetite, Fe^{3+} was partly or totally replaced by Gd^{3+}

Рис. 5 FT-IR spectra for : 1 - magnetite, doped by Gd^{3+} , 2 - magnetite,, 3 – sample annealed at $1000 \circ C (GdFeO_3)$

Puc. 1. XRD patterns of: obtained by substitution, Fe^{3+} in magnetite to Gd^{3+} in 2:1 molar ratio ($Gd^{3+}:Fe^{2+}$) (sample 1); by substitution B in molar ratio 1 mole Fe^{3+} : 1 mole Gd^{3+} : 1 mole Fe^{2+} (sample 2), annealed at $T = 1000 \degree C$

Hysteresis curve of : a – magnetite, δ- GdFeO₃

Fe₃O₄ / GdBO₃ nanostructures-Synthesis and properties

Gd4d XPS from Gd borate, immobilized on to surface of magnetite

A **scintillator** is a material, which exhibits <u>scintillation</u>—the property of <u>luminescence^[1]</u> when excited by <u>ionizing</u> <u>radiation</u>. These materials can convert high energy radiation (X-rays,c-rays, neutrons) into UV-visible light, easily detectable with conventional detectors, is in constant development. $Gd^{3+} + BO^{3-} \rightarrow GdBO_3$

XRD patterns of Gd borate after annealing at 1000° C

For instance, lithium and boron glass detectors, with high <u>neutron cross-sections</u> are particularly well suited to the detection of thermal (slow) neutrons

Dual modality MRI nanohybrids

Like other nanoparticle agents, iron based MNSs are popular multimodal imaging vehicles. Here, surface conjugation with alternative imaging probes is the most studied methodology for creating **multimodal** agents. **Multimodal** agents may facilitate improved diagnosis.

MRI applications. Gd³⁺ contrast agents

The residence time of the water molecules , τM may affect relaxivity by limiting the efficiency of the water exchange process. For systems with one available water coordination site, exchange rates decrease with the presence of bulky substituent groups in the ligand.

Schematic view of the paramagnetic relaxation mechanisms and the main relaxation parameters for an aqueous solution of a Gd3+ chelate.

The main parameters that affect the solvent relaxation rate are (1) the rotational correlation time, τR , (interval between two successive reorientations or positional changes of the molecule) (2) the coordination number and (3) the mean water residence time τM .

Gd³⁺ affect on T_1 proton relaxivity, magnetite (Fe₃O₄) –on T_2 proton relaxivity.

Structures of Gd (DTPA) (left) and Gd (DOTA) (right)

Fe₃O₄ / DMSA /Gd nanocomposite

meso-2,3-dimercaptosuccinic acid(DMSA)

S2p XPS from samples : a- DMSA, δ - magnetite,coated with DMSA, B - b, coordinated with Gd³⁺

Surface functionalization of Fe_3O_4/γ -APS by Gd-DTPA complex

ш

ш

N1s XPS from samples : amagnetite- γ - APS, δ -Fe₃O₄/ γ -APS/DTPA-Gd

12

Complexation of Gd ions with Fe_3O_4/γ -APS/DTPA-Gd nanocomposite

The absorption spectra of the complex arsenazo-3 with different Gd concentrarions.

Adsorption of Gd^{3+} ions by $\ Fe_{3}O_{4}/\gamma\text{-}APS/\ DTPA$ nanocomposite

	T1	<i>T2</i>	Neutron capture agent	Targeting via magnetic field	Hyperthermia
Fe ₃ O ₄	—	+	—	+	+
Surface-modified magnetite	±	+	—	+	+
Modifier	+		+	—	—
Resulting nanocomposite	+	+	+	+	+

Conclusions

1. Synthesized Gd-containing nanocomposites perspective for medicine and biology for the comprehensive use of NC T and T_1/T_2 MRI diagnostics in real time, and were studied some of their physical and chemical properties.

2. The synthesized nanocomposites studied in INR NAS to assess the effectiveness of their interactions with microbiological object in thermal neutron irradiation conditions.