

The influence of dopants Mo and Ni on magnetic characteristics of Fe–Si–B amorphous alloys

6

<u>A Nosenko¹, M Zakharenko², V Nosenko¹</u>

 ¹G.V. Kurdymov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 36 Vernadsky Str., 03142, Kyiv, Ukraine, <u>nosenko@imp.kiev.ua</u>
 ²Department of Physics, Taras Shevchenko National University of Kyiv, 64,Volodymyrska st., 01601, Ukraine

Description

Amorphous and nanocrystalline tape wound magnetic cores have a number of advantages as compared to conventional magnetic cores made of crystalline materials, namely:

- higher stability
- lower weight
- smaller size

Goal

To improve the magnetic properties of cores of $Fe_{80}Si_6B_{14}$ amorphous alloy by doping and heat treatment.

Samples for research

Number	Content
1	$\mathrm{Fe}_{80}\mathrm{Si}_{6}\mathrm{B}_{14}$
2	$\mathrm{Fe}_{79}\mathrm{Mo}_{1}\mathrm{Si}_{6}\mathrm{B}_{14}$
3	$\mathrm{Fe}_{78}\mathrm{Mo}_{2}\mathrm{Si}_{6}\mathrm{B}_{14}$
4	Fe ₇₇ Mo ₃ Si ₆ B ₁₄
5	$\mathrm{Fe_{78}Ni_2Si_6B_{14}}$
6	$\mathrm{Fe_{76}Ni_4Si_6B_{14}}$
7	$\mathrm{Fe}_{74}\mathrm{Ni}_6\mathrm{Si}_6\mathrm{B}_{14}$

Rapid quenching from liquid state for obtaining amorphous alloys

Equipment for rapid quenching of the melt (cooling rate of up to 10^6 K/s) enables us to obtain amorphous ribbons 25-30 μ m thick.

Thermal stability Fe₈₀Si₆B₁₄ alloys with dopants Ni and Mo

Content	T _{ons1} ,K	T_{ons2}, K	<i>Т_L</i> , К	T_{onsl}/T_L
$\mathrm{Fe}_{80}\mathrm{Si}_{6}\mathrm{B}_{14}$	761	806	1459	0.522
$\mathrm{Fe}_{79}\mathrm{Mo}_{1}\mathrm{Si}_{6}\mathrm{B}_{14}$	765	808	1449	0.528
$\mathrm{Fe}_{78}\mathrm{Mo}_{2}\mathrm{Si}_{6}\mathrm{B}_{14}$	773	834	1440	0.537
$\mathrm{Fe_{77}Mo_3Si_6B_{14}}$	786	844	1439	0.546
$\mathrm{Fe}_{78}\mathrm{Ni}_{2}\mathrm{Si}_{6}\mathrm{B}_{14}$	747	800	1450	0.515
$\mathrm{Fe_{76}Ni_4Si_6B_{14}}$	752	799	1442	0.522
$\mathrm{Fe}_{74}\mathrm{Ni}_6\mathrm{Si}_6\mathrm{B}_{14}$	752	794	1437	0.523

Fig. 1. Calorimetric curve for $Fe_{80}Si_6B_{14}$ alloy at heating rate v_{μ} =20 K/min. The insert shows the feature corresponding to Curie temperature.

X-ray phase analysis of Fe₈₀Si₆B₁₄ amorphous alloy

Fig. 2. X-ray diffraction patterns

Small angle X-ray scattering method

The size of clusters was estimated using the formula $L \approx 2\pi/q_m$, where q_m is a diffraction vector the scalar value of which $|q_m|$ is equal to $4\pi \sin \theta_m / \lambda$.

Fig. 3. Sample and the co-ordinate system for the X-ray diffraction and FMR measurements. The falling X-ray beam was directed along the x and z axes.

Fig. 4. Small angle X-ray scattering (SAXS) from the $Fe_{80}Si_6B_{14}$ ribbon from the free and contact surfaces of the ribbon.

[1] Structure and magnetic anisotropy of rapidly quenched FeSiB ribbons / G.S. Mogilny, B.D. Shanina, V.V. Maslov, V.K. Nosenko, A.D. Shevchenko, V.G. Gavriljuk // Journal of Non-Crystalline Solids. – 2011. – V. 357. – P.3237–3244.

Magnetic susceptibility $\chi(T)$ of $Fe_{80-x}Mo_xSi_6B_{14}$ (x=0, 1, 3) amorphous alloys

Fig. 5. Temperature dependences of normalized magnetic susceptibility $\chi(T)$ of Fe-Mo-Si-B alloys at heating rate v_{μ} =8 K/min.

Curie-Weiss law :

$$\chi = \chi_0 + \frac{Nm^2}{3k(T-\theta)}$$

where χ_0 – temperature independent part of susceptibility, θ – paramagnetic Curie temperature, *m* –effective paramagnetic moment per atom of the alloy, *k* and *N* – Boltzmann constant and Avogadro number, respectively.

The influence of molybdenum dopants on Curie temperature and magnetic moment of Fe_{80-x}Mo_xSi₆B₁₄ amorphous alloys

Fig. 6. Dependences of Curie temperature T_c on the content of dopant in Fe₈₀Si₆B₁₄ alloy.

Content	<i>Т_{р1}</i> , К	<i>Т_{p2}</i> , К	m_{TM}, m_B	<u>Т</u> _с , К
$\mathrm{Fe}_{80}\mathrm{Si}_{6}\mathrm{B}_{14}$	771	804	6.07	648
$\mathrm{Fe}_{79}\mathrm{Mo}_{1}\mathrm{Si}_{6}\mathrm{B}_{14}$	773	815	5.81	613
$Fe_{78}Mo_2Si_6B_{14}$	781	842	5.26	574
$\mathrm{Fe}_{77}\mathrm{Mo}_3\mathrm{Si}_6\mathrm{B}_{14}$	794	852	4.75	552

The influence of heat treatment on characteristics of dynamic magnetization loops of Fe₈₀Si₆B₁₄ amorphous alloys

650

680

700

720

11.4

15.2

193.2

983.4

4.3

5.7

53.3

283.9

Fig. 7. Magnetization loops of $Fe_{80}Si_6B_{14}$ alloy at different annealing temperatures T_a . Annealing duration was 30 min.

Initial magnetic permeability and dynamic coercive force after heat treatment

Fig. 8. Dependences of coercive force H_c and initial magnetic permeability μ_i of amorphous alloys on isochronal annealing temperature T_a . Annealing duration was 30 min.

The influence of heat treatment on structure of amorphous alloys

Fig. 9. Structural factors of alloys after isochronal annealing at T_a during 30 min. (radiation Mo K_a).

The influence of dopants Mo and Ni on dynamic coercive force of Fe_{80-x}TM_xSi₆B₁₄ amorphous alloys in the as-cast state and after the optimal thermal treatment

Table 4. Coercive force H_c , specific core loss P_{cm} and initial magnetic permeability μ_i for $Fe_{80-x}TM_xSi_6B_{14}$ amorphous alloys after isochronal annealing at optimal temperatures T_{ao} .

-	Content	<i>H</i> _c , A/m (<i>f</i> =1kHz)	P_{cm} , W/kg (f=1 kHz)	μ _i (f=100 kHz)
	Fe ₈₀ Si ₆ B ₁₄	8.7	4.4	3200
F	e ₇₉ Mo ₁ Si ₆ B ₁₄	7.1	2.6	4800
F	e ₇₈ Mo ₂ Si ₆ B ₁₄	7.4	2.7	9400
F	e ₇₇ Mo ₃ Si ₆ B ₁₄	6.6	2.3	7200
Fe ₇₈ Ni ₂ Si ₆ B ₁₄		10.4	3.8	3600
Fe76Ni4Si6B14		16.1	5.6	4400
F	Fe ₇₄ Ni ₆ Si ₆ B ₁₄	18.7	7.6	3900

Fig. 10. Dependence of H_c for $Fe_{80-x}TM_xSi_6B_{14}$ amorphous alloys on dopant content in the as-cast state (dark marks) and after the optimal heat treatment (light marks):

TM=Ni (\blacksquare , \square) and Mo (\triangledown , \bigtriangledown).

The influence of dopants Mo and Ni on initial magnetic permeability of $Fe_{80-x}TM_xSi_6B_{14}$ amorphous alloys before and after optimal thermal treatment

Fig. 11. Dependence of μ_i for $Fe_{80-x}TM_xSi_6B_{14}$ amorphpus alloys on the content of dopants in the as-cast state (dark marks) and after the optimal thermal treatment (light marks): a) TM=Mo ($\mathbf{\nabla}$, ∇) and b) TM=Ni ($\mathbf{\Box}$, $\mathbf{\Box}$). At *f*=100 kHz and B_m =0.8 T.

Conclusions:

- 1. The high values of localized magnetic moments in $Fe_{80}Si_6B_{14}$ amorphous alloy are caused by the formation of magnetic clusters enriched with iron which are characterized by nearest atomic surroundings close to α -Fe and, as to their magnetic properties, behave as superparamagnetic particles with large magnetic moment.
- Effective magnetic moment tends to decrease with increasing Mo content in Fe₈₀Si₆B₁₄ amorphous alloy due to features of Fe-Mo exchange interaction.
- 3. The change of coercive force and initial magnetic permeability at annealing of $Fe_{80-x}TM_xSi_6B_{14}$ amorphous alloy is caused by the atomic structure relaxation accompanied by local changes of short range order. Optimum annealing temperatures for high magnetic characteristics are determined.
- Magnetic properties of Fe₇₈Mo₂Si₆B₁₄ amorphous alloy after optimal heat treatment, in particular high value of initial magnetic permeability of 9400 at frequency 100 kHz enable effective use of the present alloy for manufacture of high performance medium frequency magnetic cores.

Thank you for your attention!!!

Відомо, що ефективний магнітний момент для випадку багатокомпонентної суміші має вигляд: $m^2 = \sum c_i m_i^2$

де c_i, m_i - концентрація та парціальний магнітнии момент *i*-го компонента, для нашого випадку: $m^2 = C_1 m_1^2 + C_2 m_2^2$

Як відомо, магнітний момент атомів заліза з координацією, близькою до γ-Fe (координаційне число N=12) відповідає трьом неспареним електронам, а отже m_1 вважатимемо рівним 3,87 m_B . Далі, щоб пояснити аномально високі значення магнітних моментів, необхідно припустити, що атоми заліза, яким притаманне низьке значення координаційного числа, утворюють магнітні комплекси з великими магнітними моментами. Тому m_2 можна оцінити за рівнянням: $m_2 = 2\sqrt{ns(ns-1)}$, де s=3/2 – спін ізольованого атому заліза, n – кількість атомів у магнітному кластері (комплексі). Зважаючи на значення координаційного числа для цього типу атомів заліза, приймемо для оцінки n = 8. Тоді, очевидно, якщо концентрація феромагнітних комплексів складає с, то $c_2 = c$, а $c_1 = 1 - nc$. У результаті для магнітного моменту на атом заліза mFe можна записати вираз: $m_{Fe}^2 = m^2 / c_{Fe} = (1 - nc)m_1^2 + cm_2^2$

де $c_{Fe} = 0.8 -$ атомна частка заліза в АМС, або після підстановки значень *m1* і *m2*: $m_{Fe}^2 = (1 - nc)15 + 4c \frac{3}{2}n(\frac{3}{2}n + 1) = 15 + 9nc(n - 1)$

Рис. 17. Залежність температури Кюрі від вмісту легувальної домішки в АМС Fe_{80-x}Mo_xSi₆B₁₄ (а) та Fe_{80-x}Ni_xSi₆B₁₄ (б). Швидкість нагрівання *v_н*=20 К/хв. Частку кристалічної фази X_c, що утворюється в зразках, підданих термообробці, визначали з точністю ~ 1% за методикою [107], в основі якої лежить зіставлення повних рентгенограм від вихідного аморфного, аморфно-кристалічного і повністю закристалізованого зразків. При достатньо виправданому допущенні [107] незалежного розсіяння аморфною і кристалічною фазами:

$$I(s) = X_c I_c(s) + (1 - X_c) I_a(s),$$
(2.1)

де I(s), $I_c(s)$, $I_a(s)$ - відповідно інтенсивність розсіяння від аморфнокристалічного, закристалізованого і вихідного аморфного зразків. При відомих I(s), $I_c(s)$ і $I_a(s)$ в широкому діапазоні вектора дифракції

$$X_c = (I(s) - I_a(s)) / (I_c(s) - I_a(s)).$$
(2.2)

Значення X_c визначалось шляхом перебору його значень до досягнення якнайкращої відповідності функції, розрахованої по правій частині рівняння (2.1), з одержаною експериментально.

[2] Метод определения доли кристаллической фазы в аморфнокристаллических материалах / А.Г. Ильинский, В.В. Маслов, В.К Носенко [и др.] / Металлофизика и новейшие технологии. – 1999. – Т.21, №12. – С.38–45.

Таблиця 5.1.

Значення висоти першого максимуму дифракційного гало $i(s_1)$, напівширина першого максимуму $\Delta s_{1/2}$, площа під першим максимумом ФРРА A_m та об'ємна доля кристалічної фази X_c для сплавів Fe₈₀Si₆B₁₄; Fe₇₈Mo₂Si₆B₁₄ та Fe₇₈Ni₂Si₆B₁₄ після різних термічних обробок, протягом 30 хв.

Зразок	<i>Т</i> _{<i>a</i>} , К	$i(s_1),$	$\Delta s_{1/2}, \\ A^{-1}$	А _т , ОЛ.	<u>X</u> , %
	вихідний	3,66	0,44	10,9	0
Es Ci D	650	4,03	0,40	12,3	1,5
ге ₈₀ S1 ₆ D ₁₄	700	4,08	0,32	11,1	2,5
	720	9,30	0,10	12,7	24
	970	21,86	0,07	12,8	100
	вихідний	3,86	0,44	11,5	0
$\mathrm{F}e_{78}\mathrm{M}o_{2}\mathrm{S}i_{6}\mathrm{B}_{14}$	650	4,04	0,41	12,4	0,8
	680	3,97	0,34	11,6	2,5
[720	4,43	0,30	12,1	9,9
	970	20,62	0,07	12,7	100
Fe ₇₈ Ni ₂ Si ₆ B ₁₄	вихідний	3,62	0,41	11,1	0
	650	4,16	0,42	12,6	0,5
	680	4,49	0,34	12,2	2,9
	700	5,52	0,27	12,6	5,5
	720	11,18	0,08	12,7	29
	970	23,50	0,07	12,8	100

<u>Таблиця</u> 3.12.

Локалізований магнітний момент на атом заліза *m_{Ee}*, концентрація феромагнітних комплексів *c*, температура Кюрі θ та координаційне число *N*[105] для AMC Fe₈₀B₆Si₁₄, одержаних при різних режимах <u>теромчасової</u> обробки розплаву.

Номер зразка	$T^+, \stackrel{\circ}{}C;$ $\underline{t}_{k}, \underbrace{\mathbf{XB}}.$	m _{Ee} , m _B	с, %	ө, к	N, [105]
1	1350; 5	5,10	2,2	665	12,6
2	1450; 6	5,47	3,0	665	12,8
3	1450; 20	6,07	4,3	645	12,5
4	1550; 5	5,82	3,7	648	12,3
5	1650; 1	6,16	4,6	644	11,3