Nonlinear Optical Properties of New Nanocomposites: Metal Alkanoate Glasses with Semiconductor Quantum Dots

A.G. Lyashchova ¹, D.V. Fedorenko¹, G.V. Klimusheva¹, T.A. Mirnaya², V.N.Asaula²,

 Institute of Physics, Natl. Acad. of Sci. of Ukraine. Prospect Nauki, 46, Kiev-03680, Ukraine.
 V. Vernadsky Institute of General and Inorganic Chemistry, Natl. Acad. of Sci. of Ukraine, Acad. Palladina Ave., 32-34, Kiev-03142, Ukraine.

Contents

- Structure of Cadmium Alkanoate Glasses.
- Spectral Properties of Nanocomposites: nanocrystals CdSe in the metal alkanoate matrix.
- Experimental Techniques for Measure Nonlinear Optical Constants:
 - Z-scan and SBF;
 - Z-scan under CW Diode laser and Model of photoinduced lens;
- Measurement of Nonlinear Refractive Index n₂.
- Measurement of Nonlinear Absorption Coefficient β .
- Conclusions.

Ionic Luquid Crystals and Glasses of Cadmium Alkanoates

$$\left[\mathbf{C}_{n}\mathbf{H}_{2n+1}\mathbf{C} \leq \mathbf{O} \right]_{2}^{\mathbf{I}}\mathbf{C}\mathbf{d}^{+2} \qquad n \geq 3$$

Structural model of nanocomposite: spherical CdS nanocrystal in cadmium caprilate matrix

Absorption spectra of nanocomposites

0

Fig. 1. The absorption spectra of nanocomposites for different size of CdSe nanocrystals in cadmium caprilate matrix.

Experimental Z – scan Set up for Optical Nonlinearity Measurements

Thermal Photorefraction (closed aperture)

Figure 2. Typical normalized transmittance dependence on the sample position for nanocomposite: cadmium sulfide QDs in the cadmium caprilate matrix for different size of nanocrystals. The solid curve corresponds to the PhLM fitting.

Self-defocusing

Nonlinear Absorption (open aperture)

Figure 3. Typical normalized transmittance dependence on the sample position for nanocomposite: cadmium sulfide QDs in the cadmium caprilate matrix for different size of nanocrystals. The solid curve corresponds to the PhLM fitting.

Model of Photoinduced Lens

The normalized transmittance is given by

$$T = 1 - \frac{4x}{(1+x^2)^2} \left(\frac{z_0}{2F_m}\right) + \frac{4}{(1+x^2)^3} \left(\frac{z_0}{2F_m}\right)^2, \quad x = z/z_0; \quad z_0 = \pi \omega_0^2/\lambda; \quad (1)$$

$$L_{eff} = \frac{1 - e^{-\alpha_0 L}}{\alpha_0}, \quad I_0 = \frac{2P}{\pi \omega_0^2} \quad (2)$$

$$I_0 \quad \text{on-axis irradiance at focus (z=0)}$$

$$\alpha_0 \quad \text{linear absorption coefficient.}$$

$$L \quad \text{sample length,}$$
The nonlinear refractive index:
Sheik-Bahae Formalism

$$\Delta T = T(z) - 1; \quad \Delta T(z) \approx -\frac{q_0}{2\sqrt{2}} \frac{1}{[1+z^2/z_0^2]} \quad (4)$$

$$\beta = \frac{q_0}{I_0 L_{eff}} \quad (5)$$

9

Z – scan Set up for Optical Nonlinearity Measurements

Z-scan results for CdC₈ with CdS (close z-scan)

Ζ, мм

Z-scan results for nanocomposites: CdSe nanocrystals in CdC₈ matrix (close z-scan) 1

Figure 4. Typical normalized transmittance dependence on the sample position for nanocomposite: cadmium sulfide QDs in the cadmium caprilate matrix for different size of nanocrystals. The solid curve corresponds to the PhLM fitting.

12

Z-scan results for CdSe (open z-scan)

Figure 5. Typical normalized transmittance dependence on the sample position for nanocomposite: cadmium sulfide QDs in the cadmium caprilate matrix.

Conclusions

Nonlinear properties of nanocomposites connected with CdSe QD's presence.

- Applying chopper allows to reduce the delocalization of refractive index distribution.
- Large values of nonlinear refraction coefficient open perspectives of application in nonlinear optics and photonics.

THANKYON FORYOUR

References

- Zainab S. Sadik, Dhia H. Al-Amiedy, Amal F. Jaffar. Third Order Optical Nonlinearities of C450 Doped Polymer Thin Film Investigated by the Z-Scan // Advances in Materials Physics and Chemistry, 2012, 2, 43-49
- 2. T.A. Mirnaya. S.V. Volkov, in: R.D. Rogers. K.R. Seddon, S.V. Volkov. (Eds.), Green industrial applications of ionic liquids, Kluwer Academic Publishers, London, 2002, pp.439-456
- 3. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. 2-е изд. испр. М.: ФИЗМАТЛИТ, 2009. 416с.
- M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam // IEEE J. Quantum Electron. QE-26, 760–769 (1990).
- 5. E. Reynoso Lara, Z. Navarrete Meza, M. D. Iturbe Castillo, C. G. Treviño Palacios E. Marti Panameño and M. L. Arroyo Carrasco. Influence of the photoinduced focal length of a thin nonlinear material in the Z-scan technique // Opt. Express 15, 2517-2529 (2007).
- 6. F.L.S.Cuppo, A.M.Figueiredo Neto, S.L.Gómez, P.Palffy-Muhoray. Thermal-lens model compared with Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals // J. Opt. Soc. Am B. 19, 6 (2002).
- 7. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery. Long-transient effects in lasers with inserted liquid sample // J. Appl. Phys. 36, 3-8 (1965).