Automatized setup for plasmonic measurements based on prism coupling technique

<u>A. Loot</u>, S. Pikker, L. Dolgov University of Tartu Estonia <u>ardi.loot@ut.ee</u>

Introduction: Surface plasmons

- Electromagnetic wave confined to metaldielectric interface
- Caused by oscillation of free charges
- Exponential decay to the both medium

Introduction: How to excite?

Problems:

 Photon momentum is smaller than surface plasmons at the same energy

Introduction: Kretschmann scheme

Total internal reflection:

Built machine: 2-axis motorized goniometer

Based on two motorized rotational stages (STANDA)

Θν Θα

• Angle resolution: 0.00125°

Built machine

2 axes stepper motor controller

Built machine: Control logic

- Python (numpy, scipy, matplotlib etc) and C++ (boost)
- More than 8000 lines of code (object oriented)
- Graphic user interface (Qt)
- Calibration algorithms
 - Prism position
 - Sensor position
 - Ray center finder
- Measurement setups
- Sensors:
 - Labjack
 - Light power meters
 - Spectrometers

Built machine: graphical user interface

Experiment: Setup

- Laser: 532, 593 nm
- Triangular prism
- Optical power meter:
 - Thorlabs PM100
 - Silicon Senor PM130
- Aim
 - Test setup by
 - Characterize thin gold film_{Reflected light} using surface plasmons
 - Study surface roughness influence

Experiment: Exciting surface plasmons

Theory calculated with Transfer Matrix Method (Python module)

	Medium	Intial guess (Palik)			Fitted parameters		
$\delta_m = 31 nm$		h (nm)	n	k	h (nm)	n	k
	Cover glass	∞	1,51		∞	1,51	
$\delta_d = 242 \ nm$	Titanium	5,0	2,02	2,78	5,78	2,11	3,72
	Gold	50,0	0,26	2,97	48,75	0,28	$2,\!86$
$L = 4,3 \ \mu m$	Air	∞	1,0		∞	1,0	

11

Experiment: Surface roughness

Theory:

A. Hoffmann, Z. Lenkefi, Z. Szentirmay (1998) E. Kröger, E. Kretschmann (1970)

12

Experiments: Surface roughness effect on gold parameters

Transfer Matrix method doesn't include surface parameters. Surface roughness influences dispersion relation -> reflectivity curve changes -> previously obtained gold parameters might be inaccurate

Surface Plasmons propagation constant:

 $\beta_{measured} = \beta_{smooth \, surface} + \Delta k_r$

Surface roughness influence on dispersion relation (calculated by E. Fontana & R. H. Pantell (1988) formulas)

Propagation constant	Real part (m ⁻¹)	Imaginary part (m ⁻¹)		
Measured wavenumber ($\beta_{measured}$)	11365564	115543		
Roughness influence (Δk _,)	29	1574		
Without roughness ($\beta_{\text{smooth surface}}$)	11365535	113969		

Conclusions

- Built setup is essential to study any angular dependency
- Device can be used to characterise thin metal films

Thank you for listening! Questions?