

Chuiko O.O. Institute of Surface Chemistry National Academy of Sciences of Ukraine

Deagglomeration of carbon nanotubes in aqueous solutions of variety compounds

Senior Engineer: Evgeniya Kovalska

Carbon nanotubes: uniqueness, features

Single-walled CNT, zigzag (n,0)

Properties	Characteristics	Values	
geometric	-layering -diametr -length	SWNT/MWNT ~0,4 nm÷>3 nm (SWNT) ~1,4 nm÷>100 nm (MWNT) several microns (ten)	
mechanical	-Young's modulus -tensile strength -density	~1 TPa (steel 0,2 TPa) 45 GPa (steel 2 GPa) ~1,33 – 1,4 g/sm3 (Al-2,7 g/sm ³)	
electric	-conductance -maximum current density -field-emission	metal / semiconductor ~1 TA/sm ³ (Cu-1 GA/sm ³) at 1– 3 V	
thermal	-thermal conductivity	>3 KW/m•K (diamond 2 KW/m•K)	
physical and chemical	-specific surface	100 – 1000 m²/g	

Rakov E. Chemistry of carbon nanotubes / Handbook of Nanomaterials. – 2005.

Single-walled CNT, chiral (n,m)

Double-walled CNT

Multi-walled CNT

Carbon nanotubes: application field

APPLICATION				
(carbon nanotubes)	50 nm			
	Protruding SWNT			
	500 nm 500 nm			
	- 500 nm			

Increasing levels of system using and integration

7	Materials	 Single-walled nanotube fibers 	Nanotube composites	 Integral thermal/shape control 	 Smart "skin" materials 	Biomimetic material systems
→	Electronics/ computing	• Low-Power CNT electronic components	 Molecular computing/data storage 	• Fault/radiation tolerant electronics	• Nano electronic "brain" for space exploration	• Biological computing
~	Sensors, Devices	• In-space nanoprobes	• Nano flight system components	Quantum navigation sensors	Integrated nanosensors	
					J	

Features of synthesis of carbon nanotubes by Chemical Vapor Deposition

Scheme of CVD reactor

Pilot plant for synthesis of the CNTs

The model of catalytic growth of CNTs

Features of synthesis of carbon nanotubes by Chemical Vapor Deposition

•Average diameter: 10 - 20 nm

- •Specific surface: $200 500 \text{ m}^2/\text{g}$
- •Bulk density: $15 40 \text{ g/dm}^3$

•The content of mineral admixtures: 6 - 20% (unpurified), < 1% (purified)

Characteristics of the synthesized carbon nanotubes by Chemical Vapor Deposition

G

Fig. 1. TEM images of the synthesized MCNTs

2500

2000

1500

1000

500

1300

D

1400

synthesized MCNTs

1500

1600

v, **cm**⁻¹

1700

l, arb. un.

Sample	The quantitative ratio of carbon	Binding energy, eV		The concentration of functional groups on	
	and oxygen in the samples (C: O)	C1s	O1s	the C1s-spectrum, % (at.)	
MCNTs	96 : 4	283,9	531,42	C-O - 58 C=O - 42	

Fig. 3. XPS spectra of the synthesized **MCNTs: C1s (a); O1s (b)** h

Composites based on CNTs and main problems in creating composite materials

Fig. 4. Alignment of nanotubes in polymer matrix following cutting with microtome: arrows indicate buckled nanotubes

Fig. 6. TEM image of crack in MWNT/polystyrene thin film induced by thermal stresses

Fig. 5. Image of epoxy coated MWNT subject to tensile stress as result of electron irradiation: telescopic pull-out of outer tube layer has occurred

Fig. 7. Thin and flexible paper battery of cellulose-based implanted nanotubes as electrodes

Fig. 8. Multiwalled (laminated) nanocomposites: blocks of carbon nanotubes had attached to the tape and placed in the folds of woven carbon composite to enhance the multiwalled material; carbon nanotubes are related to the carbon cloth

Study of the characteristics of the synthesized agglomerates of CNTs

Agglomerates of CNTs are obtained by CCVD

×5000

×30000-5

×30000-3

Fig. 10. SEM MCNTs agglomerates are obtained from propanol and purified aqueous solution of HCl - HF

Fig. 9. Comparison of particle sizes are determined by laser scanning method and statistical processing mikrophotos (— laser scanning, - • - statistics mikrophotos): original catalytic particles (a); agglomerates of MCNTs (b)

Deagglomeration of the carbon nanotubes in aqueous solutions of different actuators

Water systems	Type of	Time of	Distribution of	The stability
	treatment	treatment, min	CNTs-size	of dispersions
C ₆ H ₁₂ O ₆ /CNTs	ultrasound	10-20	1-100 micron	non
H ₂ O/CNTs	cavitational	2-4	1 – 100 nm	non
C ₂ H ₅ OH/CNTs	rotary homogenizer	2-5	450 nm	non
Water-soluble polymer and ionic surfactant system/CNTs	rotary homogenizer	2-5	150 – 400 nm	half year

Stability of deagglomerated CNT suspensions in aqueous solutions

Fig. 11. The distribution of the CNT agglomerates by size: after ultrasound treatment in 3% aqueous solution of glucose with 0.067 wt%. CNTs (a); after cavitation processing system with 0.05 wt%. CNTs (b); after processing with rotating homogenizer in ethanol 0.05 wt% CNTs (c)

Stability of the CNT/water-soluble polymer/ionic surfactant system

Fig. 12. The size distribution plots of the CNTs agglomerates after the treatment in rotation homogenized of the CNT/water soluble polymer/ionic surfactant system: monodisperse distribution of sizes from 220 to 450 nm with an average size of 360 nm (a); solution diluted in 5 times, a stable suspension of nanoparticles with an average size of 300 nm (b); in polymodal approximation there of the smaller fraction of size about 150 nm (c)

b

С

Fig. 13. CNT/water-soluble polymer/ionic surfactant mixture films, deposit on the glass surface, correspondingly to the Fig. 9.

Conclusions:

- ✓ Deagglomeration of the carbon nanotube bundles were performed in an aqueous solutions of different chemical composition using ultrasound, cavitation and rotating homogenizing treatment.
- ✓ Degree of dispersion performed through cavitation is strongly depends on the concentration of the CNTs in water. Preparation of the unsaturated solutions (> 3 wt. % CNTs) helps to the formation of the homogeneous mixture, in which the particles are uniform and with size of 10–200 nm. The organic additive (C₆H₁₂O₆) increases the efficiency of the dispersion during the ultrasound treatment. Processing with an universal homogenizer of the CNT/water-soluble polymer/ionic surfactant system results in the stable solution with a particle size of from 150 to 400 nm.
- ✓ Obtained results are helps to: explain behavior of the CNTs agglomerates during the homogenizing procedure; underline the factors which are helps to homogenize CNTs in the aqueous solutions. Utilizing of the CNT/water-soluble polymer/ionic surfactant mixture coupled with homogenizer machine shows the best results in terms of the solution stability, particles size and their distribution. Developed pathway is the open road for CNT/polymer composites preparation.

