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SURFACES AND INTERFACES @ NIS
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Measurements on
activated samples and in
controlled atmosphere
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Measurements at LT on
activated samples and in
controlled atmosphere

LiBH4, 514 nm laser line
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RAMAN spectroscopy is originated by the scattering of the light
(electromagnetic wave, EMW) by a system containing electrons, e.g. a
molecule. In the scattering process the electrons of the system are
interacting with the oscillating electric vector of EMW and are forced to
oscillate, becoming new emitting sources of EMW, that is the scattered light.
Experimentally, three type of EMW are obseved to overcome:

NAN N
| \f \ J/ \A\ / yé Vo + V  anti-Stokes Raman scattering
Vo

p Scatterin '
\ \ﬂ w systemg / We \ Rayleygh scattering
/\/\9 Vo = V. Stokes Raman scattering

From experiments,

the e Which is the origin of
the Raman scattering?

efficiency is
proportional to 1,*




A classical view

If a molecule interacts with an EMW, the oscillating electric field of
photons will exert oppositely directed forces on the electrons and the
nuclei, inducing an electric dipole moment . The induced dipole
moment is proportional to the electric field and to a property of the
molecule called the polarizability « (tensor):

4 H=aE

H=|Hy | induced dipole

Oy Oy Oy |polarizability of
the molecule

E,

electric vector of
E=E

y | the incident EMW
Ez

Each component of the induced
dipole can be obtained
accordingly to

Hy=3 o E,




is an oscillating vector, each of its components

By considering that [E can be related to the v, frequency of the incident

EMW by the relation:

E,=EJcos2zv t

H, zaga o ESCOS27v L

As like as an emitting radio-antenna of an AM station, such
oscillating dipole will emit EMW of v, frequency. For a simple

case of a x polarized light and o, ,,=0 for p=c, the induced dipole will
have only the x component, defined as:

Hy =0, ERCOS2tVt — p9=0r, B9 — 14,=p9C0S27 v

Ky
H= 0
0

M=y

and the average intensity of the emitted EMW
of v, frequency can be defined as:

O\21/4 @ is the angle between
| (9) :(ﬂx) VO sin24 the induced dipole and
Vo Ar2 the direction of
propagation of the EMW




For a molecular system however «,, is dependent upon the position of
the nuclei. So, the 3N-6 (3N-5) vibrational modes have to be
expected to induce a variation in this quantity. For a diatomic
molecule with the single normal coordinate @,, the dependency of «,, on @,
iS expressed as a series expansion:

B 0 equilibrium value of
Ay =05 T —RZ Q1+ ------- Zpo  the polarizability.

The position of the nuclei is time dependent because the molecule is
vibrating with frequency v. This motion can be expressed as:

Q1=Q10C0827Z U where Qlo is the maximum vibrational amplitude

So, a,, oscillates wih the vibrational frequency v also



By keeping only the first two terms of the series expansion, the
omponents of the induced dipole can so be redefined as:

1,(Q)= YaO Edcos2zv t--

0O —O

QEOQO aQ W) COSZ’Zt("cEP
1 )0
l

anti-Stokes Raman Stokes Raman

If the incident EMW is polarized along the x direction and
a,,=0 for p=c, then:

1y (Q) = EQcos2zv +% EQQ{)[%O(%;XL[COS 27t (v, +Vv)+cos27t (v, —v)]

Such oscillating induced dipole will emit 2 types of EMWSs:

a) Scattered EMW unshifted in frequency (Rayleygh sc

b) Scattered EMW red-shifted (510kc<) and blue
Stokes) of vif vibration mode induce a varic




For a given vibrational mode, the Raman scattering total intensity will
be defined as:

| (9) = B(Voiv)4 |O ' I, is the intensity of

the incident EMW

b) The Raman scattering intensity is prc
fourth power of (vyxv)

c) The intensity of the incident
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Quantum-mechanical description of the
Raman scattering

The quantum-
mechanical
description of the
scattering process
of a EMW with
Ve frequency by
a molecule can

be schematized
as follows:

Excited electronic level e

L
>

O
st
)
c
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In this case
hv o +E E 4

Ground electronic
level g




The final effect of the Raman scattering is a transition between the
vibrational levels v of the electronic ground state of the molecule

a) Stokes: v=1<-v=0 (absorption of a photon with energy hv)

b) anti-Stokes: v=0<«-v=1 (emission of a photon with energy hv)

IStokes oceXp[ hCV}

KT

anti—Stokes




Raman spectroscopy

. powerful technique to study bulk properties (like phase

transitions) of heterogeneous catalysts
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Laser line 785 nm
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SERS (Surface Enhanced Raman
Discovered in the 70 (pyridine on silver ele

Goldandsilvercolloldsworktoo( 2igt
Trans. II 1978, 75, 790) to enhe

wavelength /nm
Fui. 4.—Absorbance (—) and Raman excitation profike (- - -) for gold sol with added pyndine.
© denotes the experimental points (arbitrary linear intensity scale) for the 1014 cm ' Raman band
of adsorbed pyridine.




. Fresh gold
colloid

After addition of 10-3M Py

'jz.so 500 550 600 650 700 750 800
(&) wavelength/nm

E field enhancement comnr
at A = 630 nm for
particle




SERS of Py on Ag colloid (liquid pt

UV-Vis Trasmittance Ag SOL Munro

—— Ag sol. Munro AgNO3 + Na citrato dil. 1:4
——KNO31M

—— 0.5 ml 1M KNO3 + 1 ml Ag sol Munro + 2.5ml H202
—— 0.5 ml 1M NaCl + 1 ml Ag sol Munro + 2.5ml H20

Laser line 514 nm, 100% power
—— Pyr 0.01M
— Ag_sol + H,0 + Pyr (0.01M)
—— Ag_sol + H,O + KNO, 0.5M + Pyr (0.01M)
0.0 1 . . . : . . 1 — Ag_sol + H,O + NaCl 0.5M|+ Pyr (0.01M)
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SERS measurements in solution are
strongly affected by low reproducibility of
the signal, probably due to an ill-defined
aggregation state. To overcome this,
SERS measurements are tipically
performed on substrates obatined by
depositing drops of aggregated colloidal
solution (containing already the analyte)
on glass-slides and evaporating the
solvent.
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Raman counts (a.u.)

Laser line 514 nm, 100% power
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Synthesis of SiO, supported Au gold nanoparticles

Impregnation of SiO, (Aerosil 300, surface area 300 m?/g) with x
amount of HAuCl,e3H,O (pH = 9.5)

Impregnated samples (yellow powders) were rinsed with distilled water
and dried overnight at 333 K

Dried powders were re-washed three times with diluted solutio
water ammonia

Finally the so obtained powders were calcined at ¢
then reduced in H, at 573 K fo 2 hours

x = 0 (Au0, reference sample
(Au70) and 100wt% (AulC
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Synthesis of SiO, supported Au gold nanoparticles: a
simplified procedure

AuSwt%
Aux

Impregnation of SiO, (Aerosil 300,
surface area 300 m2/g) with x
=16 and 50 wt% of Au (Au
precursor: HAuCl, x 3H,0)

Impregnated samples (yellow
powders), after drying at room
temperature, were rinsed with
ammonia solution (30 wt%, 10 ml
in 100 ml of water), rinsed with
distilled water, and dried
overnight at 333 K

The so obtained powders were
calcined at 673 K for 4 hour
after a pre-treatment at 1€

for 20 mins
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When compared to
pure Aerosil300, <EF>
of 103 is obtained for
pyridine (dosed from
the vapour phase).
SERS is more effective
for molecules.




Sol-gel synthesis allows to
obtain high surface area
microporous and transparent
SiO, monoliths.

Once properly doped with Au,
or Ag, they could work as
very effective substrates for
SERS.

One pot synthesis of Au doped (0.02-2
wt% ) monoliths has been tried.

Up to now no good results are
‘ ‘ obtained. In particular no control of Au
aggregation state: this means no

>

control on the plasmonic properties of
the materials. Work is in progress.

Au loading




Cr doping

Cr doping (0.5 wt%) leads to microporous
glass with properties, when properly activated,
very similar to Cr/SiO, Phillips catalyst.

Ti doping

2mol% 5mol% 10mol%

Ti is prevale




Raman Resonant Raman

Virtual levels

In this case
Ve # Ee-Eg

Excited electronic level e

Use of an exciting laser with a
frequency which falls in an
electronic transition of the
system
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Phillips catalyst
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Phillips catalyst

Damin et al,, W //d 0 o
ChemPhysChem, 2006, 7, W
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DRUv-Vis on samples calcined at 550 °C for 3 hours

Ti containing glass - — simoo

m—— SiTi02

XANES on SiTi02 sample

LMCT
transitions

Normalized intensity, a.u.

—— as such (550°C in air)

— activated at 500°C in vac 200 250 300 350
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Incident Energy, eV

Laser line 244 nm, 25% power, 50x40" acgs, 15x obj
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Interaction with H,0,
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Resonant Raman
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