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The University of Torino in brief 

• The oldest among the four Piedmont Universities (established in 1404 ) 

• 13 Faculties (in the fields of Humanities, Social  Sciences, Medicine and 

                      Life Sciences, Science) 

• 9 Interfaculty Schools (e.g. Biotechnology) 

• 1 School for Advanced Studies 

• approx 70.000 students, approx 2.200 Faculty staff 

distinguished students:  

Nobel laureates in  Medicine  

R. Dulbecco and R. Levi-Montalcini 



The Research System 

•  35 Departments (15 in Science and Technology) 

•  4 PhD Schools (2 in S&T, 25% foreign students) 

•  in 2009: 1350 PhD students, 600 Post Docs,  

      700 technicians 

• Overall funding: approx. 73 M€ 

• 3 National Centres of Excellence: 

•Molecular Imaging 

•CEBIOVEM (Plant and Microbial Biosensing) 

•NIS (Nanostructured Interfaces and surfaces) 



Research in Nanoscience and Nanotechnology 

   

The “Nanostructured Interfaces and surfaces” (NIS)  

Centre of Excellence (Est. 2003) 

• Inter-disciplinary character: Physics, Chemistry,  

        Biology, Neuroscience 

• 80 permanent researchers, approx 60 young researchers 

• supports departimental laboratories  and manages common  

  interdisciplinary laboratories 



Solid-solid interfaces 

Solid-gas and solid-liquid interfaces 

Nanobiointerfaces 

SURFACES AND INTERFACES @ NIS 
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Measurements on 
activated samples and in 
controlled atmosphere 
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Measurements at LT on 
activated samples and in 
controlled atmosphere 
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RAMAN spectroscopy is originated by the scattering of the light 

(electromagnetic wave, EMW) by a system containing electrons, e.g. a 
molecule. In the scattering process the electrons of the system are 
interacting with the oscillating electric vector  of EMW and are forced to 
oscillate, becoming new emitting sources of EMW, that is the scattered light. 
Experimentally, three type of EMW are obseved to overcome:   

n0 

n0 

n0 + n 

n0 - n 

anti-Stokes Raman scattering 

Rayleygh scattering 

Stokes Raman scattering 

Scattering 
system 

Which is the origin of 
the Raman scattering? 

From experiments, 
the scattering 
efficiency is 
proportional to n0

4 



A classical view 

If a molecule interacts with an EMW, the oscillating electric field of 
photons will exert oppositely directed forces on the electrons and the 
nuclei, inducing an electric dipole moment . The induced dipole 
moment is proportional to the electric field and to a property of the 
molecule called the polarizability a (tensor):  
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Each component of the induced 
dipole can be obtained 
accordingly to: 



By considering that  E
is an oscillating vector, each of its components 
can be related to the n0 frequency of the  incident 
EMW by the relation: 

Consequently, the induced dipole is an 
oscillating vector also and each of its 
components can be now obtained by the 
relation: 
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As like as an emitting radio-antenna of an AM station, such 
oscillating dipole will emit EMW of n0 frequency.  For a simple 
case of a x polarized light and a=0 for , the induced dipole will 
have only the x component, defined as: 
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of n0 frequency can be defined as: 

q is the angle between 
the induced dipole and 
the direction of 
propagation of the EMW 
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For a molecular system however a is dependent upon the position of 
the nuclei. So, the 3N-6 (3N-5) vibrational modes have to be 
expected to induce a variation in this quantity. For a diatomic 
molecule with the single normal coordinate Q1, the dependency of a on Q1 
is expressed as a series expansion: 

equilibrium value of 
the polarizability. 

The position of the nuclei is time dependent because the molecule is 
vibrating with frequency n. This motion can be expressed as: 

where  is the maximum vibrational amplitude 

So, a oscillates wih the vibrational frequency n also 
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By keeping only the first two terms of the series expansion, the 
components of the induced dipole can so be redefined as: 

Rayleygh 

Stokes Raman 

Such oscillating induced dipole will emit 2 types of EMWs: 

a) Scattered EMW unshifted in frequency (Rayleygh scattering) 

b) Scattered EMW red-shifted (Stokes) and blue-shifted (anti-
Stokes) of n if vibration mode induce a variation in axx,i.e. 

If the incident EMW is polarized along the x direction and 
a=0 for , then: 
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For a given vibrational mode, the Raman scattering total intensity will 
be defined as: 

I0 is the intensity of 
the incident EMW 

From the above reported relation, it clearly appears that: 

a) The Raman scattering intensity is proportional to  

b) The Raman scattering intensity is proportional to the 
fourth power of (n0±n) 

c) The intensity of the incident EMW 
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Experimental Raman spectra show 
that anti-Stokes signals are less 
intense than the Stokes ones. This 
observation is not properly taken 
into account from the classical 
description. 



The quantum-
mechanical 
description of the 
scattering process 
of a EMW with 
nexc frequency by 
a molecule can 
be schematized 
as follows: 

Virtual levels 

Excited electronic level e 

hn0 h(n0-n) 
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Ground electronic 
level g 
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Quantum-mechanical description of the 
Raman scattering 



The final effect of the Raman scattering is a transition between the 
vibrational levels v of the electronic ground state of the molecule 

a) Stokes: v=1v=0 (absorption of a photon with energy hn) 

b) anti-Stokes: v=0v=1 (emission of a photon with energy hn) 
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Raman spectroscopy 

powerful technique to study bulk properties (like phase 
transitions) of heterogeneous catalysts 

low sensitivity towards very diluted species as surface 
(active) groups are 
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How nanotechnology can help in 
increasing Raman sensitivity? 



SERS (Surface Enhanced Raman Spectroscopy) 
Discovered in the ’70 (pyridine on silver electrodes) 

Gold and silver colloids work too (Creigthon et al., J. Chem. Soc. Faraday 
Trans. II 1978, 75, 790) to enhance pyridine (Py) Raman signals 

Raman Py signals of a 10-3M Py 
solution in presence of gold 

nanoparticles (prepared by red. with 
NaBH4) appear 3 times more intense 

than those in 0.1 M Py solution 

Intensity of Py signals increases 
as exciting laser line is 

approaching the peak at higher 
wavelength appearing in the 
optical spectrum of Py/Gold 

system 



Fresh gold 
colloid 

After addition of 10-3M Py 

E field enhancement computed 
at l = 630 nm for 30 nm gold 

particles dimer 

Py molecules which are located in 
the lighter region of the dimer 
(hot spot) are subjected to higher 
electric field than that coming from 
the exciting laser line: so their 
Raman signals will be enhanced 
(|E|4), as ind is proprotional to the 
applied electric field. This is the so 

called electromagnetic 
enhancement (EMe) component of 
SERS. However it has been  also 
observed that the stronger is the 
interaction mol/gold interaction, 
the higher is the enhancement 
(chemical enhancement, CHe) 
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SERS of Py on Ag colloid (liquid phase measurements) 

Ag sol prepared by reduction of 
AgNO3 with trisodium-citrate. 

Ag nano-particles capped by 
citrate groups 

Py is not able to give 
aggregation in such 
prepared colloid. 

NaCl or KNO3 have to 
be used. 



SERS measurements in solution are 
strongly affected by low reproducibility of 
the signal, probably due to an ill-defined 
aggregation state. To overcome this, 
SERS measurements are tipically 
performed on substrates obatined by 
depositing drops of aggregated colloidal 
solution (containing already the analyte) 
on glass-slides and evaporating the 
solvent. 
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SERS from colloids could be 
affected by serious problems of 
contamination coming from 
chemicals (citrate, NO3

-, Cl-) 
adopted for 
reduction/aggregation 

More clean SERS active 
substrates can be obtained 
by metal sputtering on 
nano-spheres (as in the 
case of AgFON)… 

…or by applying 
synthesis 
procedure 
coming from Au 
catalysts 
preparation… 



Synthesis of SiO2 supported Au gold nanoparticles 

a) Impregnation of SiO2 (Aerosil 300, surface area 300 m2/g) with x 
amount of HAuCl4•3H2O (pH = 9.5) 

 

b) Impregnated samples (yellow powders) were rinsed with distilled water 
and dried overnight at 333 K 

 

c) Dried powders were re-washed three times with diluted solution of 30% 
water ammonia 

 

d) Finally the so obtained powders were calcined at 673 K for 4 hours and 
then reduced in H2 at 573 K fo 2 hours 

 

x = 0 (Au0, reference sample), 40wt% (Au40), 70wt% 
(Au70) and 100wt% (Au100) of Au 
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Increasing loading does not affect the dimensions and the shape of the Au 
nano-particles, but instead their aggregation state 
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A. Damin et al., J. Phys. Chem. C 2008, 112, 4932-4936. 



Synthesis of SiO2 supported Au gold nanoparticles: a 
simplified procedure 

Aux 

• Impregnation of SiO2 (Aerosil 300, 
surface area 300 m2/g) with x 
=16 and 50 wt% of Au (Au 
precursor: HAuCl4 x 3H2O) 

• Impregnated samples (yellow 
powders), after drying at room 
temperature, were rinsed with 
ammonia solution (30 wt%, 10 ml 
in 100 ml of water), rinsed with 
distilled water, and dried 
overnight at 333 K 

• The so obtained powders were 
calcined at 673 K for 4 hours, 
after a pre-treatment at 190 °C 

for 20 mins 

Au5wt%

Au16wt%

Au50wt%
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When compared to 
pure Aerosil300, <EF> 
of 103 is obtained for 
pyridine (dosed from 
the vapour phase). 
SERS is more effective 
for molecules. 

A. Damin et al., J. Phys. Chem. C 2010, 114, 3857-3862. 



Sol-gel synthesis allows to 
obtain high surface area 
microporous and transparent 
SiO2 monoliths. 
Once properly doped with Au, 
or Ag, they could work as 
very effective substrates for 
SERS. 

One pot synthesis of Au doped (0.02-2 
wt%) monoliths has been tried. 
Up to now no good results are 
obtained. In particular no control of Au 
aggregation state: this means no 
control on the plasmonic properties of 
the materials. Work is in progress. 

Au loading 



Ti doping 

Cr doping 

2mol% 5mol% 20mol% 10mol% 

Ti is prevalently present as TiO2 
nanoparticles 

Does Ti 
isomorphously 
substitute Si 
as in Ti-
zeolites? 

Can Raman be 
employed to 
get 
informations 
about so 
diluted 
species? 

Cr doping (0.5 wt%) leads to microporous 
glass with properties, when properly activated, 
very similar to Cr/SiO2 Phillips catalyst. 



Virtual levels 

Excited electronic level e 
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Ground electronic level g 
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Resonant Raman  

In this case 
hnexc = Ee-Eg 

Raman  

In this case 
hnexc  Ee-Eg 

Use of an exciting  laser with a 
frequency which falls in an 
electronic  transition of the 
system 

Become Resonant only 
totalsymmetric modes where the 
deformation occurring during the 
vibration is similar to that one 
found for the electronic transition 
related with the same group 
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