Graphene-like autointercalated Niobium Diselenide nanoparticles: new possibility of 2D nanomaterials design

Liudmyla Chepyga

Frantsevich Institute for Problems in Materials Science of NASU. Kyiv, Ukraine.

E-mail: liudmylachepyga@ukr.net

I.N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

APPLICATION OF 2D NANOMATERIALS ON THE BASE OF GRAPHENE-LIKE 2H-Nb_{1+y}Se₂, 0≤y≤0,29

1. Nanomaterials for energy converters:

- Lithium chemical current sources
- photointercalation solar energy converters

2. Hydrogenous nanomaterials and sensors:

3

Hydrogen energetic

APPLICATION OF 2D NANOMATERIALS ON THE BASE OF GRAPHENE-LIKE 2H-Nb_{1+v}Se₂, 0≤y≤0,29

3. Nanolubricants:

➤ multifunctional solid nanolubricant additives for the tribotechnical parameters improvement of industrial machine oils and greases

 \succ solid, radiation-resistant, electroconductive nanolubricants (antifriction composition nanomaterials, multifunctional nanostructured coatings) for space and ground based operation conditions at high and low temperatures, for hydrogen atmosphere and medical equipment

NANO-SCALE LUBRICANT ADDITIVES

for friction and wear reduction

- o aerospace engineering,
- o mechanical engineering,
- o oil and gas complex,
- o transport,
- o military equipment,
- o metallurgy, etc.

MULTI-FUNCTIONAL NANO COATINGS for superior performance

N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

APPLICATION OF 2D NANOMATERIALS ON THE BASE OF GRAPHENE-LIKE 2H-Nb_{1+v}Se₂, 0≤y≤0,29

4. "Nanoarmor":

nanomaterials as super shock absorbers at very high pressures (to 40 GPa).

6. Nanoelectronics:

2D nanolayers \Rightarrow 3D nanocomposites of new generation

Optically active nanocomposite: graphene, BN and NbSe₂ layers

I.N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

5. Magnetic 2D nanomaterials:

NANOSYNTHESIS OF GRAPHENE-LIKE 2H-Nb_{1+v}Se₂, 0≤y≤0,29

- The nanosynthesis was carried out by "up-bottom" activated processes of intercalation (Li⁺/H₂O) of autointercalated 2H-Nb_{1.02(1)÷1.29(1)}Se₂ micron powders. We studied the timing data of galvanostatic processes of intercalation with the potentiostat (PI-50-1, reference electrode AgCl). The structural properties of dispersed powders were investigated by X-ray studies, SEM.
- The activated processes of intercalation (Li^+/H_2O) lead to substantial dispersion of $2H-Nb_{1.02(1)\div 1.29(1)}Se_2$ micron particles along cleavage plane where weak Van der Waals forces act.

I.N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

Fig. 1. Dependences of potential for $2\text{H-Nb}_{1+y}\text{Se}_2$ powders, U, vs. time, t: $1 - 2\text{H-Nb}_{1.02(1)}\text{Se}_2$, $2 - 2\text{H-Nb}_{1.09(1)}\text{Se}_2$, $3 - 2\text{H-Nb}_{1.12(1)}\text{Se}_2$ (I=10 mA).

Fig. 2. Dependences of potential for 2H-Nb_{1.02}Se₂ powders, U, vs. time, t, at current, I: 1 – 10 mA, 2 – 30 mA, 3 – 50 mA (single crystals), 4 – 10 mA, 5–30 mA, 6–50 mA (micron particles).

.N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

• The average sizes (XRD) of homogeneous, anisotropic graphen-like 2H-Nb_{1.02(1)}Se₂ nanoparticles (2H-TaS₂ structural type) are :

22.7(7) – 46.4(1.4) nm for [013] crystallographic direction and 61.9(1.7) – 144(7) nm for [110] direction.

Table 1 - Results of X-ray studies $2H-Nb_{1.02(1)}Se_2$ after electrochemical intercalation (Li⁺/H₂O) and dispersion

Compound	Parameters of unit cells		Data for the powders after electrochemical processing					
	or initial pa	nicles, film	Parameters of unit cells, nm		Average size of particles, nm, in the crystallographic directions [013] and [110].		Amount nanolayers, n	Relation d _[110] /d _[013]
	а	с	а	с	d _[013]	d _[110]		
2H-Nb _{1.02(1)} Se ₂	0.34449(2)	1.2554(1)	0.3447(2)	1.2597(9)	27.4(9)	75.0(1.9)	43	2.74
			0.3447(2)	1.2550(9)	41.6(1,4)	143.5(7.0)≈144(7)	66	3.46
			0.3447(2)	1.2558(8)	46.4(1,6)	183.4(9.6)≈180(10)	73	3.95
			0.3446(2)	1.2607(9)	25.4(8)	61.9(1.7)	40	2.44
			0.3444(2)	1.2563(9)	49.7(1,4)	164.8(7.4)≈165(7)	79	3.32
			0.3447(2)	1.2550(9)	28.1(8)	135.0(6.4)≈135(6)	44	4.80
			0.3448(2)	1.2551(9)	22.7(7)	132.4(4.2)≈132(4) 	36	5.81

.N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

Elementary cells parameters (a, c) of 2H-MCh₂ nanostructure correlate with average sizes of nanoparticles in the crystallographic directions [013] and [110] (**fig. 3**).

Fig. 3. Dependences of unit cell parameter c of graphene-like 2H-Nb_{1.02(1)}Se₂ nanoparticles on their average size, d, in the crystallographic directions [013] (a) and [110] (b).

Fig. 4. The results of scanning electron microscopy of graphene-like $2\text{H-Nb}_{1.02(1)\div 1.29(1)}\text{Se}_2$ nanoparticles, the values of a current I=30 mA (magnification - x20000): $a - 2\text{H-Nb}_{1.02(1)}\text{Se}_2$, $b - 2\text{H-Nb}_{1.09(1)}\text{Se}_2$, $c - 2\text{H-Nb}_{1.12(1)}\text{Se}_2$, $d - 2\text{H-Nb}_{1.22(1)}\text{Se}_2$.

I.N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

11

- The activated processes of intercalation (Li⁺/H₂O) lead to substantial dispersion of 2H-Nb _{1.02(1)÷1.29(1)} Se₂ micron particles.
- The nanoparticles size is controlled efficiently by kinetic parameters of intercalation processes.
- The average sizes (XRD) of homogeneous, anisotropic graphen-like 2H-Nb_{1.02(1)}Se₂ nanoparticles (2H-TaS₂ structural type) are 22.7(7)–46.4(1.4) nm for [013] crystallographic direction and 61.9(1.7)–144(7) nm for [110] direction.

N. Frantsevich Institute for Problems in Materials Science, National Academy of Science of Ukraine

Thanks for your attention

