#### The nanoparticle shape's effect on the light scattering cross-section <u>D.V.Butenko</u>, P.M.Tomchuk Institute of Physics of NASU

Summer School, Bukovel, 2012

# Introduction

**Rayleigh's scattering:**  $d\Sigma \sim \omega^4 |\alpha(\omega)|^2$ ,

 $\omega$  is the light frequency, and  $\alpha(\omega)$  is the particle polarization.

Drude-Sommerfeld theory:

$$\epsilon(\omega) = 1 - \frac{\omega_{pl}^2}{\omega^2 + \nu^2} + i\frac{\nu}{\omega}\frac{\omega_{pl}^2}{\omega^2 + \nu^2},$$

 $\nu$  is the collision frequency inside the particle bulk,  $\omega_{pl}$  is the frequency of plasma electron oscillations in the metal.

#### Size effect: $\nu \to \nu + A \frac{v_F}{R}$ ,

 $v_F$  is the Fermi velocity, R refers to the particle radius, A is an effective parameter.

#### **Electric field**

$$\epsilon''(\omega) = \frac{4\pi}{\omega}\sigma(\omega),$$

 $\sigma(\omega)$  is the light-induced conductivity.

**External field:**  $\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 exp[i(\mathbf{kr} - \omega t)]$ 

$$\lambda_D \ll R \ll \lambda,$$
  
 $kR \ll 1,$ 

 $\lambda_D$  is de Broglie wavelength.

$$R = max(R_x, R_y, R_z).$$

. . . . . .

**Internal field:** 
$$E_{in}^j = \frac{E_0^j}{1 + L_j[\epsilon(\omega) - 1]},$$

 $L_j$  are depolarization factors in the *j*th direction.

# **Kinetic approach**

 $f(\mathbf{r}, \mathbf{v}, t) = f_0(\varepsilon) + f_1(\mathbf{r}, \mathbf{v})$  $f_0(\varepsilon)$  is the Fermi distribution function. **Boltzmann equation:**  $(\nu - i\omega)f_1(\mathbf{r}, \mathbf{v}) + \mathbf{v}\frac{\partial f_1(\mathbf{r}, \mathbf{v})}{\partial \mathbf{r}} + e\mathbf{E}_{in}\mathbf{v}\frac{\partial f_0}{\partial c} = 0.$ **Boundary conditions:**  $f_1(\mathbf{r}, \mathbf{v})|_S = 0, v_n < 0,$  $v_n$  is the velocity component normal to the particle surface.  $f_1(\mathbf{r}, \mathbf{v}) = -e\mathbf{E}_{in}\mathbf{v}\frac{\partial f_0}{\partial \varepsilon}\frac{1 - \exp[-(\nu - i\omega)t_0(\mathbf{r}', \mathbf{v}')]}{\nu - i\omega},$ where the characteristic  $t_0(\mathbf{r}', \mathbf{v}')$  is  $t_0(\mathbf{r}', \mathbf{v}') = \frac{1}{v'^2} \left[ \mathbf{r}' \mathbf{v}' + \sqrt{(\mathbf{R}^2 - \mathbf{r}'^2) \mathbf{v}'^2 + (\mathbf{r}' \mathbf{v}')^2} \right]$ 

## **Tensor of complex conductivity**

(1)

#### **Spheroidal nanoparticle**

$$R_x = R_y = R_\perp, R_z = R_\parallel$$

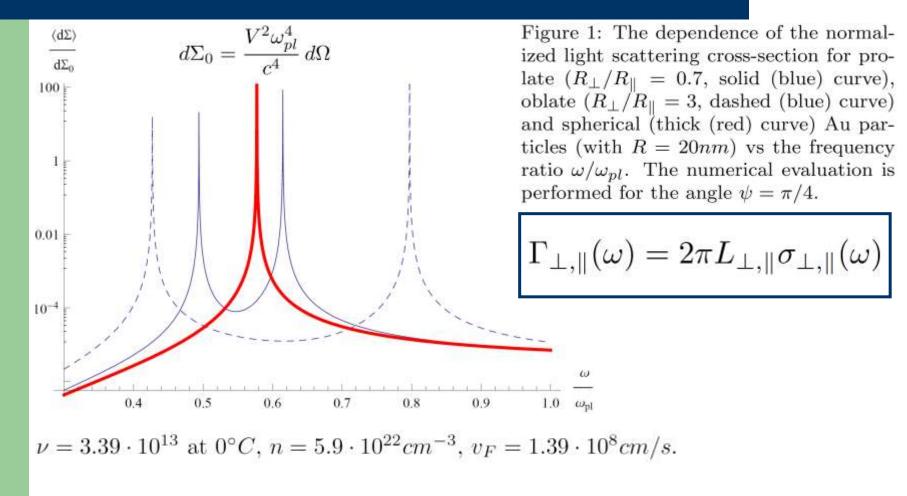
**Polarization tensor of a spheroidal nanoparticle** 

$$\alpha_{\perp,\parallel}(\omega) = \frac{V}{4\pi} \frac{\epsilon_{\perp,\parallel}(\omega) - 1}{1 + L_{\perp,\parallel}[\epsilon_{\perp,\parallel}(\omega) - 1]}$$

Nanoparticles are chaotically oriented in the ensemble of particles. After averaging over different orientations of nanoparticles, <u>the light scattering</u> <u>cross-section is</u>:

$$\langle d\Sigma \rangle = \frac{\omega^4}{15c^4} \left\{ 2 |\alpha_{\perp}(\omega) - \alpha_{\parallel}(\omega)|^2 + \frac{1}{2} \left[ 3 |2\alpha_{\perp}(\omega) + \alpha_{\parallel}(\omega)|^2 + 2 |\alpha_{\perp}(\omega)|^2 + |\alpha_{\parallel}(\omega)|^2 \right] \sin^2 \psi \right\} d\Omega$$
 where  $\psi$  is an incidence angle

#### **Numerical calculations**



7

#### **Numerical calculations**

8

$$|\alpha_{\perp}(\omega)|^{2}_{\omega=\omega_{\perp}}/|\alpha_{\parallel}(\omega)|^{2}_{\omega=\omega_{\parallel}} \approx \left[\frac{L_{\parallel}\sigma_{\parallel}(\omega_{\parallel})\omega_{\parallel}}{L_{\perp}\sigma_{\perp}(\omega_{\perp})\omega_{\perp}}\right]^{2}$$

$$\stackrel{(d\Sigma)}{\xrightarrow{d\Sigma_{gh}}} \quad \text{for } R_{\perp} \gg R_{\parallel} \quad |\alpha_{\perp}(\omega)|^{2}_{\omega=\omega_{\perp}}/|\alpha_{\parallel}(\omega)|^{2}_{\omega=\omega_{\parallel}} \approx 4.$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0^{6}$$

$$|0$$

#### **Numerical calculations**

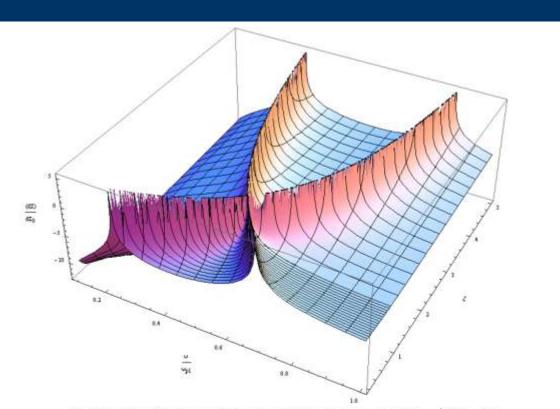


Figure 3: The dependence of the ratio  $\langle d\Sigma \rangle / d\Sigma_0$  for spheroidal Au particles (with R = 5nm) vs the frequency ratio  $\omega / \omega_{pl}$  and the semiaxes ratio  $R_{\perp} / R_{\parallel} \equiv \zeta$ . The numerical evaluation is performed for the angle  $\psi = \pi/4$ .

## Conclusions

- When a size of the particle becomes less than a free electron path, the conductivity of an asymmetrical particle becomes a tensor quantity, and the diagonal elements of this tensor define the half-widths of plasmon resonances. The half-widths in turn define an intensity of light scattering in a region of frequencies close to resonances.
- It has been shown that in the collection of chaotically oriented identical asymmetrical particles averaging over different directions of particles does not change distinctive features of asymmetrical particles. A spectrum of light scattering has two peaks at the frequencies of plasmon resonances in contrast to a spectrum for spherical particles that has only one peak.
- Regarding to the effect of particle's shape on the plasma resonance halfwidths, one may obtain results that can differ several times from the results obtained without regarding to this effect.

# Thank You for Your Attention