Nanooptic and nanophotonic

Optical-induced remagnetization effects in rare-earth transition based tunnel magnetic nanostructures

M.M. Krupa, A.M. Korostil

Department of Physics of Magnetic Materials and Nanocrystalline Structures, Institute of Magnetism, Nat. Acad. Sci.and Min. Ed. Sci. of Ukraine. Prospect Vernadsky,36-b, Kyiv-03142, Ukraine. E-mail: amand@rambler.ru

Physical limits of the minimal remagnetization time and minimal sizes of a remagnetization media represent one of fundamental problems of the physics of magnetism, which has a crucial significance for realization of ultrafast and ultra-density recording and readout of information [1]. The solution of this problem associates with the laser impact on the ferrimagnetic multilayered nanostructures.

The laser-induced remagnetization of a ferrimagnetic nanolayer under femtosecond pulsed laser radiation is characterized by its initial laser-induced swift heating, thermal demagnetization with different speeds of ferrimagnetic sublattices with subsequent a magnetic bias that can be caused both laser-induced electron excitations and nonequilibrium transitional ferromagnetic-like magnetic states combined with exchange interaction relaxation [2,3].

Features of the laser-induced remagnetization and magnetoresistance effects in magnetic tunnel nanostructures based of the rare-earth transition amorphous ferrimagnetic compounds TbCoFe with controlled strong enough magnetic anisotropy have investigated. The role of the laser-induced effective internal magnetic fields related to the magneto-optical inverse Faraday effect, a spin torque transform effect and the laser-injection spin nonequilibrium redistribution in the magnetization reverse has studied. It was demonstrated, that these effects can be used for creating TbCoFe-based multilayered tunnel magnetic nanostructures with ultrafast and high-density information recording.

1. *Vahaplar K,, Kalashnikova A. M., Kimel A. V. at al.* Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State // Phys. Rev. Lett. -2009.-**103**, N 11.-P. 117201-1-117201-4.

2. *Ostler T.A., Barker J., Evans R.F.L., at al.,* Ultrafst heating as a sufficient stimulus for magnetization reversal in ferrimagnet // Nature Com.-2012.- N 3.-P. 1-6.

3. *Baryakhtar V. G., Butrin V.I., Ivanov B. A.* Exchange relaxation as a source of an ultrafast reorientation in ferrimagnetics //JETP Lett.2013.-**98.-**P. 327.