Nanocomposites and nanomaterials

Qurie-switch

A.F. Kravets ${ }^{1}$, Yu.I. Dzhezherya ${ }^{1}$, A.I. Tovstolytkin ${ }^{1}$, I.M. Kozak ${ }^{\mathbf{1}}$, Yu.O. Savina 2, V.A. Pashchenko ${ }^{2}$, S.L. Gnatchenko ${ }^{2}$, B. Koop ${ }^{3}$, and V. Korenivski ${ }^{3}$
${ }^{1}$ Institute of Magnetism, NAS and MES of Ukraine, 36 b Vernadsky Ave., 03142 Kyiv, Ukraine.
E-mail: kravets@imag.kiev.ua

2 Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, 47 Lenin Ave., 61103 Kharkiv, Ukraine.

2 Nanostructure Physics, Royal Institute of Technology, 10691 Stockholm, Sweden.
Qurie-switch is a tri-layers of two strong ferromagnets separated by a weakly ferromagnetic spacer, $\mathrm{F}_{1} / \mathrm{f}(\mathrm{P}) / \mathrm{F}_{2}$ (in the bulk, f becomes paramagnetic P above T_{C}), demonstrated sharp thermally-controlled magnetic switching in the structure just above room temperature [1]. The switching is determined by the interplay of the $\mathrm{F}_{1}-\mathrm{F}_{2}$ exchange coupling across the weakly-ferromagnetic/paramagnetic spacer f and the Zeeman energy of the soft ferromagnetic layer $\left(\mathrm{F}_{1}\right)$ in an external field. The former is a nontrivial function of temperature due to the overlap of the intrinsic Curie-transition and the interface-induced proximity effects in the spacer.

Fig. 1. Magnetization distribution in $\mathrm{F}_{1} / \mathrm{ff} / \mathrm{F}_{2 \text { pin }}$ Curie-switch at high $\left(\mathrm{T}>\mathrm{T}_{\mathrm{C}}\right)$ and low ($\mathrm{T}<\mathrm{T}_{\mathrm{C}}$) temperatures.

A developed theoretical model of the switch and an obtained analytical expression for the effective switching field and its functional form versus temperature take into account the significantly non-linear profile of the exchange and local magnetization throughout the thickness of the switch. The result is that magnetic switching can be achieved by either a temperature or field sweep, or a combination of the two where the sensitivity of the magnetic transition to external field and temperature are interdependent parameters. An illustration of the field-temperature switching for typical Curie-switch is shown in Fig. 1.

1. Kravets A.F. et al. Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: A thermomagnetic Curie switch. // Phys. Rev. B -2012.-86, N 21.-P.214413(7).
