Nanocomposites and nanomaterials

Qurie-switch

<u>A.F. Kravets¹</u>, Yu.I. Dzhezherya¹, A.I. Tovstolytkin¹, I.M. Kozak¹, Yu.O. Savina², V.A. Pashchenko², S.L. Gnatchenko², B. Koop³, and V. Korenivski³

¹ Institute of Magnetism, NAS and MES of Ukraine, 36 b Vernadsky Ave., 03142 Kyiv, Ukraine. E-mail: kravets@imag.kiev.ua

² Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, 47 Lenin Ave., 61103 Kharkiv, Ukraine.

² Nanostructure Physics, Royal Institute of Technology, 10691 Stockholm, Sweden.

Qurie-switch is a tri-layers of two strong ferromagnets separated by a weakly ferromagnetic spacer, $F_1/f(P)/F_2$ (in the bulk, f becomes paramagnetic P above T_C), demonstrated sharp thermally-controlled magnetic switching in the structure just above room temperature [1]. The switching is determined by the interplay of the F_1 - F_2 exchange coupling across the weakly-ferromagnetic/paramagnetic spacer f and the Zeeman energy of the soft ferromagnetic layer (F_1) in an external field. The former is a nontrivial function of temperature due to the overlap of the intrinsic Curie-transition and the interface-induced proximity effects in the spacer.

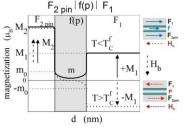


Fig. 1. Magnetization distribution in $F_{1/f}/F_{2pin}$ Curie-switch at high (T>T_C) and low (T<T_C) temperatures.

A developed theoretical model of the switch and an obtained analytical expression for the effective switching field and its functional form versus temperature take into account the significantly non-linear profile of the exchange and local magnetization throughout the thickness of the switch. The result is that magnetic switching can be achieved by either a temperature or field sweep, or a combination of the two where the sensitivity of the magnetic transition to external field and temperature are

interdependent parameters. An illustration of the field-temperature switching for typical Curie-switch is shown in Fig. 1.

1. *Kravets A.F. et al.* Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: A thermomagnetic Curie switch. // Phys. Rev. B -2012.-**86**, N 21.-P.214413(7).