Thematic area of the work (nanocomposites and nanomaterials)

Layered structures of charges in classical Coulomb clusters

S.Ya. Goroshchenko

Bogolyubov Institute for Theoretical Physics, Natl. Acad. of Sci. of Ukraine. Metrologichna Str., 14-6, Kiev-03680, Ukraine. E-mail:gorosh@bitp.kiev.ua

Configurations of charges in mesoscopic and cluster systems are strongly dependent on the nature and profiles of confining potentials at low temperatures [1,2]. In present work we deal with neutral clusters and use the electrostatic confinement originated from the uniform cylindrical background. Model system is specified by a number N of charge units -e confined, by length 2L, radius R, and a whole charge eN_b of a background. In neutral clusters $N_b=N$. Equilibrium structures announced in the title above were obtained in numerical calculations and some of them are shown in Fig.1.

Fig.1. Structures in neutral clusters with N=5k *and* L/R=0.4k (k=1-5).

Self-organization of structures into layered associations is caused here by the formation of the Coulomb barriers in self-consistent potential patterns. In structures with $N \ge 20$ the layers are aligned with cluster axes with an accuracy of 0.01%. In all cases N > 5 the spiral symmetry on a limited length scale is clearly pronounced.

1. *Dubin D.H.E.,O'Neil T.M.* Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states) // Rev Mod Phys.-1999.-**71**, N 1.-P. 87-172.

2. *Piacente G., Hai G.Q., Peeters F.M.* Continuous structural transitions in quasi-one-dimensional classical Wigner crystals // Phys Rev B.-2010.-81, N 2.-P. 024108(5).