Nanocomposites and nanomaterials

Solubility of chromium in tetragonal and cubic zirconia

I.A. Yashchishyn, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, V.V. Burkhovetskiy

Materials Science Department, Donetsk Institute for Physics and Engineering, Natl. Acad. of Sci. of Ukraine. R. Luxembourg str., 72, Donetsk-83114, Ukraine. E-mail: i.yashc@gmail.com

Solubility of reinforcing additive in matrix compound is among principal factors governing microstructure and mechanical properties of a composite. Despite enchanced mechanical properties [Bannister 1993; Hirano 1996] zirconia/chromia system has not gained much attention because of high chromium volatilization at elevated temperatures [Ownby 1972]. However, volatilization of chromium appears to become negligible when starting powder size falls in to nanoregion.

Available estimates of chromium solubility in yttrium-stabilized zirconia based on lattice data vary significantly depending on yttria load. Jayaratna et. al have estimated chromium solubility to be 1.4 and 0.7 mol. % of chromia for cubic zirconia containing 14.8 and 8 mol. % of yttria [Jayaratna 1984; Jayaratna 1986]. In tetragonal zirconia stabilized with 3 mol. % of yttria solubility was found to be approx. 0.33 mol. %, but available experimental data point on even lower solubility.

Present paper concerns chromium solubility in tetragonal and cubic zirconia. Dependence of solubility on yttria content is discussed.

- 1. Ding Z, Oberacker R, Thummler F. Cr_2O_3 particulate reinforced Y-TZP ceramics with high fracture toughness and strength. In: Bannister M, editors. Science and Technology of Zirconia V. Taylor & Francis; 1993. p. 421-32.
- 2. Hirano S., Yoshinaka M., Hirota K., Yamaguchi O.Formation, characterization, and hot isostatic pressing of Cr_2O_3 -doped ZrO_2 (0,3 mol% Y_2O_3) prepared by hydrazine method// Journal of the American Ceramic Society. -1996.-79, N 1.-P. 171-176.
- 3. *Ownby .D., Jungquist .E.* Final sintering of Cr₂O₃// Journal of the American Ceramic Society. -1972, Sep.**-55,** N 9.-P. 433-436.
- 4. *Jayaratna M., Yoshimura M., Somiya S.*Subsolidus phase relations in the pseudoternary system ZrO₂-YO_{1.5}-CrO_{1.5} in air// Journal of the American Ceramic Society. -1984.**-67**, N 11.-P. c240-c242.
- 5. Jayaratna M., Yoshimura M., Sōmiya S.Hot pressing of Y_2O_3 -stabilized ZrO_2 with Cr_2O_3 additions// Journal of Materials Science. -1986.**-21,** N 2.-P. 591-596.