Nanocomposites and nanomaterials

Modification of the surface of mesoporous TiO₂ by Ag/Cu bimetallic nanostructures for improve the process of photocatalytic reduction of CO₂

V.V. Shvalagin, M.L. Ovcharov, V.M. Granchak

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prosp. Nauky, 03028 Kyiv, Ukraine. e-mail: <u>shvalagin@inphyschem-nas.kiev.ua</u>

In this work we present a study on mesoporous TiO_2 samples modified by bimetallic nanostructures Ag/Cu via photochemical reduction of Ag⁺ and Cu²⁺ ions on the surface of titanium oxide. Deposited metal atoms form the nanoparticles within the sizes of 10-20 nm. Such heterostructures were studied in a reaction of gas-cycle CO₂ photocatalytic reduction by water vapor. We showed that such modification of mesoporous TiO₂ has a higher activity in the reaction of CO₂ photocatalytic reduction comparing to the same sample modified by individual metallic nanoparticles (TiO₂/Ag or TiO₂/Cu). We found the optimum molar Ag/Cu ratio (1:6) in heterostructure corresponds to the highest rate of CO₂ photocatalytic reduction to CH₄. It is shown the dependence of the activity of nanoheterostructures on the sequence of metal deposition, where the maximum rate of accumulation of CH₄ observed in the deposition Ag nanoparticles followed by precipitation of the copper layer.

Fig. CH_4 accumulation rate as a function of $TiO_2/Ag/Cu$ heterostructure composition of metal in molar concentrations. Dotted line depicts methane accumulation rate using individual TiO_2 .