Nanocomposites and nanomaterials

Crystallization behavior of nanostructured Ge-Ga-Se glasses

H.I. Klym¹, A. Ingram², O.I. Shpotyuk³, B.Ya. Kulyk⁴

¹ Lviv Polytechnic National University, Bandery str., 12, Lviv-79013, Ukraine. E-mail: <u>klymha@yahoo.com</u>

² Opole University of Technology, Ozimska str. 75,, Opole- 45370, Poland.

³ Scientific Research Company "Carat", Stryjska str., 202, Lviv-79031, Ukraine.

⁴ Ivan Franko National University of Lviv, Dragomanova str., 50, Lviv-79005, Ukraine.

Ge-Ga-Se chalcogenide glasses (ChG) have shown many advantages for potential applications of optical modulator or frequency converter, efficient laser host materials, and fiber-optical amplifier in the IR spectral region [1]. In the present paper, we imply, the positron annihilation lifetime spectroscopy complete with doppler broadening of annihilation radiation and atomic force microscopy (AFM) methods to study of crystallization behaviour in 80GeSe₂-20Ga₂Se₃ ChG caused by thermally-activated treatment above-Tg annealing for 10, 25, 50 and 80 h [2]. It is shown that the structural changes caused by crystallization can be adequately described by positron trapping modes. The observed changes in defect-related component in the fit of experimental positron lifetime spectra for annealed glasses testifies in a favour of structural fragmentation of larger free volume entities into smaller ones with preceding nucleation in the initial stage.

With increasing annealing time from 10 h to 25 h and further to 50 and 80 h, the well-pronounced crystalline peaks at $2\theta \sim 28^{\circ}$ are observed. The positions of this peak are in good agreement with GeGa₄Se₈ phase indexation. The size of nanocrystalline inclusions is near 9–10 nm in sizes. Crystallization of GeSe₂ phases in form of nano-wires with length near 250 nm is surface phenomenon. The crystallization of these phases presents an advantage for transparency of glasses.

1. *Calvez L., et al.* Influence of gallium and alkali halide addition on the optical and thermo–mechanical properties of $GeSe_2$ - Ga_2Se_3 glass // Appl. Phys. A.-2007.-**89**.-P.183-188.

2. *Shpotyuk O., et all.* Thermally-induced crystallization behavior of 80GeSe₂–20Ga₂Se₃ glass as probed by combined X-ray diffraction and PAL spectroscopy // J. Alloys and Compounds.-2014.-**582**.-P. 323–327.