Nanocomposites and nanomaterials

Synthesis of single crystal alumina whiskers

A.M. Verkhovliuk, O.A. Shcheretskiy, R.A. Sergiienko, V.V. Apukhtin, D.S. Kanibolotsky

Physico-Technological Institute of Metals and Alloys, Natl. Acad. of Sci. of Ukraine. Akad. Vernadsky Avenue, 34/1, Kiev-03680, Ukraine. E-mail: kanibolotsky@univ.kiev.ua

Metal oxide single crystal whiskers are used as reinforcements in composites. One of the most perspective materials for the whiskers production is α -alumina. It is reported a theoretical and experimental investigation of the α -alumina single crystal whiskers synthesis using interaction between pure molten Al and one of the oxides: Al₂O₃, SiO₂, Fe₂O₃ and NiO. The mechanism of the synthesis includes oxidation of pure Al to form gaseous Al₂O and subsequent disproportionation of the latter with Al_2O_3 and Al formation. The Gibbs free energy of reactions 2nAl + $MeO_x = nAl_2O + MeO_{x-n}$ and $2nAl + 3MeO_x = nAl_2O_3 + 3MeO_{x-n}$ has been calculated using reference thermodynamic data (Me is Al, Si, Fe or Ni, x and n are integers, $n \le x$). It was taken into consideration, that the Fe₂O₃ and Fe₃O₄ are unstable above 1566 °C and 1538 °C, respectively, and decompose to form FeO. The Gibbs free energy of the Al₂O formation is negative in all the cases at 1500 °C and 1600 °C, but the Al₂O₃ formation is more thermodynamically favorable than the Al₂O if the NiO is used as an oxidizer. Powder mixtures of pure Al with Fe₂O₃, NiO, Al₂O₃ and SiO₂ were pressed into tablets, which were placed into alumina crucibles, and annealed at 600 °C for 2 hours, finally heated in an induction furnace up to 1600 °C and soaked for 15 minutes. The experiments were conducted under argon atmosphere as well as under air with prevalence of CO. In the second case the alumina crucible with the tablets was placed in a massive graphite crucible which is not tightly closed by a graphite cap. A white vapor (presumably of Al₂O) was escaping during the experiments with Fe₂O₃ and SiO₂ and amorphous Al₂O₃ was deposited on the graphite cap and on the internal walls of the furnace chamber. After the furnace was cooled down to room temperature, the tablets with Fe_2O_3 and NiO were etched by 10 % HCl and the specimens with Al₂O₃ and SiO₂ were etched by 5 % NaOH. Then the specimens were analyzed using REMMA-102 Scanning Electron Microscope. Single crystal Al₂O₃ whiskers 0.05-7 µm in width and 10-3000 μ m in length have been revealed in the experiments with Fe₂O₃ and SiO₂. A larger number of the whiskers have been obtained using the Fe_2O_3 as an oxidizer. The whiskers were not synthesized in the experiments with Al_2O_3 , despite the process is thermodynamically favorable. Probably, kinetic impediments occurred and a higher temperature is required for the reaction.