Nanocomposites and nanomaterials

Synthesis and crystal structure of TiO_X nanoparticles

<u>B. H. Jhuo¹</u>, C. W. Su¹, P. W. Chi¹, Y. C. Yu², Y. D. Yao², and D. H. Wei¹

1. Institute of Manufacturing Technology and Department of Mechanical Engineering, National Taipei University of Technology (TAIPEI TECH), Taiwan 2. Institute of Physics, Academia Sinica, Taiwan

*Email: dhwei@ntut.edu.tw

TiO₂ is a general material for many optoelectronic applications such as solar cell and photodetector. In this study, the TiO_x nanoparticles have been synthesized by drying method. The microstructure, morphology, and composition of synthesized TiO_x nanoparticles were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Fig.(a) shows the XRD patterns of TiO_x nanoparticles were annealed at different temperatures from 500 °C to 700 °C, and the anatase-rutile phase transformation of produced TiO_x nanoparticles took place at the annealing temperature of over 500 °C. This demonstrated that 500 °C is the appropriate temperature to obtain TiO_x anatase-phase nanoparticles. Thus, we fixed a working temperature of 500 °C, and TiO_x nanoparticles were annealed under three different ambiences: air, N_2 , and mixture of N_2 and O_2 . As shown in Fig. (b), the TiO_x nanoparticles annealed in gas ambiences possessed stronger X-ray diffraction signals than that those annealed in the air. Fig. (c) showed the compositions of TiO_x nanoparticles annealed under different ambiences at 500 °C, and Fig.(d) showed the composition of TiO_x thin films which were fabricated by spin coating from the synthesized nanoparticles. According to EDS analysis, both TiO_x nanoparticles and thin film exhibited signals of titania and oxygen. In conclusion, the zero and 2d-dimensions TiO_x nanostructure with anatase and rutile phases have been successfully synthesized and deposited on silicon substrates, and this work provide the broad applications for many fields of TiO_x based devices.

1. P.S. Shinde, C.H. Bhosale, Properties of chemical vapour deposited nanocrystalline TiO_2 thin films and their use in dye-sensitized solar cells// J. Anal. Appl. Pyrolysis-2008.-82.-P. 83-88.

2. T.S. Senthil, N. Muthukmarasamy, S. Agilan, R. Balasundaraprabhu, C.K. Senthil Kumaran, Effect of surface morphology on the performance of natural dye sensitized TiO_2 thin film solar cells// Adv. Mater. Res.-2013.-678.-P. 326-330

3. S.G. Pawar, M.A. Chougule, D.S. Dalavi b, P.S. Patil b, A.V. Moholkar b, Shashwati Sen, J.H. Kim, V.B. Patil, Effect of annealing on microstructural and optoelectronic properties of nanocrystalline TiO_2 thin films// J. Exp. Nanosci.-2013.-8.-P. 500-508.

4. Alka, K.M. Choi, Y.H. Kim, S.M. Lee, Synthesis of TiO₂ using sol–gel method and comparison of photocatalytic characteristics// DESALIN WATER TREAT.-2013.-**51**.-P. 3076-3080.

5. S. Sabale, A. Bandgar, H. Wang, K. Gurav, J. H. Kim, S. H. Pawar, Direct Synthesis and Characterization of High Temperature Stable Anatase TiO_2 Nanospheres From Peroxo-Titanium Complex// Met. Mater.-2013.-19.-P. 483-488.

Figs. (a) and (b) are XRD patterns of TiO_x nanoparticles before and after annealed in vacuum at different temperatures and ambiences (N₂, O₂+N₂). Figs. (c) and (d) are EDS results of TiO_x -based nanoparticles and thin film annealed under different ambiences at 500 °C.