"Nanotechnologies: from basic research to innovation"

Plasmomechanics: triggering and controlling the plasmonic coupling at the nanoscale through macroscale applied strains

<u>Roberto Caputo</u>¹, Ugo Cataldi^{1,2}, Yuriy Kurylyak¹, Gérard Klein², Mahshid Chekini², Thomas Bürgi² and Cesare Umeton¹

¹Department of Physics, Centre of Excellence for the Study of Innovative Functional Materials CEMIF-CAL, University of Calabria and LICRYL - IPCF (Liquid Crystals Laboratory, Institute for Chemical Physics Processes) CNR – UOS Cosenza, 87036 Arcavacata di Rende, Italy E-mail: roberto.caputo@fis.unical.it

² Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

"Plasmomechanics" has been emerging in the last years as a promising field for technological applications in the next future. Here we present a preliminary study paving the way for a future fabrication of plasmonic strain sensors based on plasmonic coupling of gold nanoparticles deposited onto elastomeric films [1].

1. U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton and T. Bürgi, ", J. Mat. Chem. C (submitted)