Nanocomposites and nanomaterials

Synthesis and characterization of (Cr_xV_{1-x})_{n+1}AlC_n solid solution

<u>T.V. Basyuk¹</u>, T.O. Prikhna¹, A.V.Kozyrev¹, V.E. Moshchil¹, P. Chartier², T. Cabioc'h²

¹ Promising Technologies of Superhigh Sressures, Dispersed Materials and Sintering of Ceramics Department, Institute for Superhard Materials of National Academy of Scence of Ukraine. Avtozavodska, 2, Kiev, 04074, Ukraine. E-mail: tanya.basyuk@gmail.com

² Institut P' UPR 3346 CNRS - Universite de Poitiers – ENSMA, SP2MI, Teleport BP30179, 86962 Futuroscope, France.

MAX phases are a class of ternary nitrides and carbides, with the general formula $M_{n+1}AX_n$. These phases have a hexagonal crystal structure that consists of edge-sharing [M_6X] octahedron interleaved with A layers; they are thus considered as nanolaminated-layered materials with a unique combination of metal and ceramic properties [1]. For example, they are resistant to oxidation and corrosion, elastically stiff, but at the same time, they also demonstrate high thermal and electrical conductivities and they are machinable.

 $(Cr_xV_{1-x})_{n+1}AlC_n$ MAX phases solid solutions with n=1, 2, 3 and x=0, 0.25, 0.5, 0.75, 1 were obtained from commercial Cr, V, Al and C powders by using pressureless reactive sintering at high temperature (1400°C to 1600°C) or hot isostatic pressure technique (80MPa, 1450°c).

X-ray powder diffraction analysis confirmed the existence of continuous $(Cr_xV_{1-x})_2AlC$ solid solution, the amounts of additional phases increasing with the synthesis temperature and the V content. The synthesis of $(Cr_xV_{1-x})_3AlC_2$ and $(Cr_xV_{1-x})_4AlC_3$ phases was realized only for x=0.25; 0.5; 0.75 and x=0; 0.25; 0.5, respectively.

Structural parameters of all modifications of $(Cr_xV_{1-x})_{n+1}AlC_n$ solid solution were established by full profile Rietveld refinements. Lattice parameters and cell volumes decrease linearly with increasing the Cr content, while the values of z positions (free parameters in the unit cell) remain almost constant. The evolutions of the interatomic and interlayer distances as a function of x and n have been constructed.

1. *Barsoum M. W.* The M_{n+1}AX_n phases: A new class of solids thermodynamically stable nanolaminates // Progress in Solid State Chemistry.-2000.- **28**.-P. 201-281.