Nanocomposites and nanomaterials

The effect of TiB₂ nanoparticles on the structure of TiB₂-(Fe-13wt.%Mo) composite materials

M.S. Storozhenko, O.P. Umanskyi, I.S. Martsenyuk, O.A. Bondarenko

Surface Engineering Department, Institute for Problems of Materials Science, Natl. Acad. of Sci. of Ukraine. Krzhyzhanovsky str., 3, Kyiv-03056, Ukraine. E-mail: storozhenkomary@ukr.net

In order to investigate the effect of TiB_2 nanoparticles on the structure formation the TiB_2 -(Fe-13%Mo) composite materials with the initial TiB_2 particles size of 500-700 nm was produced by sintering in a vacuum.

The heterogeneous structure of TiB_2 -(Fe-13wt%Mo) composite material contains light grey matrix and distributed white and grey colored grains (Fig 1a). The microanalyses revealed that the metal matrix is formed by Fe–Fe₂B eutectic. The composition of white colored grains corresponds to the Mo_2FeB_2 phase. Small grey inclusions were identified as complex (Fe,Ti)B phase. Hereby the TiB_2 nanoparticles were not reveled in the structure of composite materials. However, at several locations TiB_2 phase was found to nucleate and grow on the (Fe,Ti)B grains, as shown in Fig. 1b.

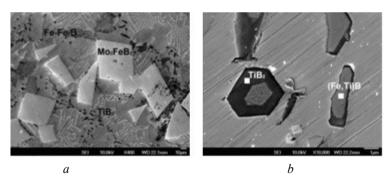


Fig. 1. Structure of TiB₂-(Fe-13%Mo) with TiB₂ nanoparticles:

a general view; b area of TiB₂ recrystalization

These results seem to indicate that TiB_2 nanoparticles dissolve completely into the liquid Fe-based alloy at high temperature that promotes formation of Mo_2FeB_2 and (Fe,Ti)B phases and $Fe-Fe_2B$ eutectic. During cooling, due to the decrease in solubility of Ti and B, the TiB_2 crystals nucleate and grow from solutions in metallic melt.