Nanoscale physics

Quantum mechanical calculations of the calcium apatites structure and properties

A.O. Romansky, V.L. Karbivskyy, A.P. Soroka

Department of Nanostructures Physics, G.V. Kurdymov Institute for Metal Physics, Natl. Acad. of Sci. of Ukraine. Academician Vernadsky Boulevard, 36, Kiev-03142, Ukraine. E-mail: romansky.edu@gmail.com

Electronic and atomic structures as well as physical properties of the apatite series $Ca_{10}(PO_4)_6X_2$ (where X = F, Cl, Br, OH) were investigated by using quantum-mechanical methods within DFT (density functional theory): all-electron full-potential LAPW+LO (WIEN package), pseudopotential and PAW methods (Abinit package).

It was found that on account of energy expediency $Ca_{10}(PO_4)_6F_2$ and $Ca_{10}(PO_4)_6Cl_2$ formed group P6₃/m instead of group P6₃, although small divergency of full energy for unit cell shows that anions F⁻ and Cl⁻ keep lability to their position on *c* axe. The shortest O–O_(adjacent tetrahedron) bound of the investigated apatites is O₍₁₎–O_{(1)c} bound, i.e. O₍₁₎–O₍₁₎ interactions make a main contribution into interactions between tetrahedron complexes.

Obtained X-ray emission bands O K_a of Ca₁₀(PO₄)₆F₂ and Ca₁₀(PO₄)₆(OH)₂, Ca K_β of Ca₁₀(PO₄)₆(OH)₂ were in good accordance with the experimental spectra. The accordance between theoretical and experimental curves of L_{II}, _{III}-band of calcium in Ca₁₀(PO₄)₆F₂ was slightly worse, which indicates the need to consider relativistic corrections. Some discrepancy between theoretical and experimental forms of the bands P K_β of Ca₁₀(PO₄)₆(OH)₂ was caused by the small radius of MT-sphere of phosphorus and consequently by not taking into account the electron density of phosphorus located beyond it. The difference between the forms of curves of theoretical and experimental F K_a bands of Ca₁₀(PO₄)₆F₂ is caused by the calculation.

It was found that calcium phosphate chlor-, fluor- and hydroxyapatites have the elasticity constants C_{33} higher than C_{11} . Sound velocity along the sixth-order axis of calcium chlor-, fluor- and hydroxyapatites is higher than in the planes perpendicular to it.

Phonon spectra of calcium phosphate apatites were in good agreement with the IR-spectrometry data.