Nanocomposites and nanomaterials

Double-Walled Carbon Nanotubes as a Molecular Container for Anti-Aromatic Systems

<u>O.V. Mykhailenko¹</u>, Yu.I. Prylutskyy¹, I.V. Komarov¹, A.V. Strungar², O.O. Mykhailenko¹

¹ Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv-01601, Ukraine. E-mail: <u>alexm-@ukr.net</u>

² Vernadsky National Library of Ukraine, 3, Prospekt Sorokorichchiya Zhovtnya, Kyiv-03039, Ukraine.

Complex compounds of various types and nature have been widely applied in many fields of science and technology. Complex aggregates [1] based on nanostructures such as nanotubes and other compounds, for example, arenes, have unique properties, since a combination of their individual characteristics provides for further growing interest to the research in chemistry, physics, electronics, etc.

There has been theoretically studied a complex of cyclobutadiene with doublewalled carbon nanotubes (DWCNT) - (5.5)@(10.10) 270 carbon atoms. The authors have automatically varied the ratio of cyclobutadiene from 4 to 1, with constant concentration of DWCNT. Optical density has been calculated at 350 nm which is recommended by the references for complexes with DWCNT.

Computational data for interaction of cyclobulatione with D W Civi			
(DWCNT/cyclobutadiene)	Absorption, ε	λ (nm)	Δ Absorption
1:0	0,0561	362	
1:1	0,0361	360	0,0200
1:2	0,0321	357	0,0240
1:3	0,0268	352	0,0293
1:4	0,0215	350	0,0346

In the computational spectra there has been observed a slight hypsochromic shift. Absence of solvents and classical molecule functionalisation has proved direct interaction of the molecule-nanocapsule with the host molecule. Such relation of components theoretically enables the creation of complexes of 1:1 and 1:2 types. However, the spectra processing results by the Benesh-Hildebrandt method favour the structure of 1:1 type, and K_{assr} is 99,3 1·mol⁻¹ (k_{xorr} 0,993).

1. Mykhailenko O.V., Prylutskyy Y.I., Komarov I.V., Strungar A.V.

Thermodynamic Complexing of Monocyclopentadienylferrum (II) Intercalates with Double-Walled Carbon Nanotubes // Nanoscale Research Letters. – 2016. – Vol.11 – N. 128. – P. 1351-1357.