Nanoscale physics

Influence of cooling and heating rate on low temperature thermal conductivity of g-Ge₂S₃

V. Mitsa^{1*}, A. Feher², R. Holomb¹, S. Petretskyi¹, V. Tkac^{2,3}

¹ Uzhhorod National University, Pidhirna Str., 46, 88000 Uzhhorod, Ukraine.
² Pavol Jozef Šafárik University in Košice, 041 54 Košice, Slovak Republic.
³ Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic.
E-mail: V. Mitsa: v.mitsa@gmail.com

The Thorpe model [1] predict increasing of nanoclusters connectivity in structural matrices of chalcogenide glasses starting at mean coordination number z=2.4 (As₂S₃). The compositional (z) changes are influenced on thermal properties of chalcogenide glasses [2]. In [2] the low temperature thermal conductivity of g-As₂S₃ in temperature range from 100 K to 2.5 K measured with cooling rate of 0.385 K/min and heating with rate of 0.415 K/min in the opposite direction was presented. This experiment revealed a hysteresis of K(T) above plateau located in the region of "boson peak". The highest connectivity in Ge-S glassy system is at z=2.8 which corresponds to g-Ge₂S₃. For this glass composition during cooling and heating with rate of $v_1 = 0.5$ K/min in similar temperature range as for g-As₂S₃ the hysteresis k(T) was also detected. $\Delta \kappa$ (T) reproduce the density of state in a g(ω)/ ω^2 representation estimated from a Boson peak (BP) experimentally obtained by Raman measurements at room temperature. Δk (T) in g-Ge₂S₃ is shifted in high energy side in comparison with Δk (T) of g-As₂S₃. It correlates with the "blue" shifting of boson maximum (v_B) in g-Ge₂S₃, $v_B=32$ cm⁻¹ in comparison with its position in g-As₂S₃, $v_B = 26$ cm⁻¹. During cooling and heating of g-Ge₂S₃ with rate of $v_2 = 0.2$ K/min the difference of Δk (T) is small and hysteresis appears weaker. The region of "plateau" in g-Ge₂S₃ is significantly wider and covered the temperature range from 10 to 40 K in comparison with the region of "plateau" in g-As₂S₃ (3.6 K and 10.7 K). The increases in k(T) values in g-Ge₂S₃ in comparison with those found in g-As₂S₃ correlates well with the increasing of sound velocity in g-Ge₂S₃ relating g-As₂S₃. Role ring correlations in random networks is discussed.

- 1. *M. F. Thorpe and Y. Cai.* Mechanical and Vibrational Properties of Network Structures // J. Non-Cryst. Sol. 1989. 114. P.19–24.
- V. Mitsa, A. Feher, S. Petretskyi, R. Holomb, V. Tkac, P. Ihnatolia and A. Laver. Hysteresis of low-temperature thermal conductivity and Boson peak in glassy (g) As₂S₃: nanocluster contribution // Nanoscale Research Letters - 2017 - 12:345. DOI: 10.1186/s11671-017-2125-6.