Nanoscale physics

Nanostructural clustering, structure defects and magnetic properties of the magnetoresistance La_{0.6}Sr_{0.15}Bi_{0.15}Mn_{1.1-x}Ni_xO_{3-δ} ceramics

<u>N.A. Liedienov¹</u>, A.V. Pashchenko^{1,2}, V.K. Prokopenko¹, V.V. Burchovetskii¹, V.P. Kladko³, A.I. Gudimenko³, D.D. Tatarchuk⁴, Y.V. Didenko⁴, I.V. Fesych⁵, S.A. Nedil'ko⁵

¹ Donetsk Institute for Physics and Engineering named after O. O. Galkin, NASU, Prospect Nauki, 46, Kyiv-03028, Ukraine.

E-mail: nikita.ledenev.ssp@gmail.com

² Donetsk National University of Economy and Trade named after Michael Tugan - Baranovsky, Ostrowski str., 16, Kryvyi Rih-50005, Ukraine.

³ V.E. Lashkaryov Institute of Semiconductor Physics, NASU, Prospect Nauki, 41, Kyiv-03028, Ukraine.

⁴ National Technical University of Ukraine "Igor Sikorsky KPI", Prosp. Peremohy, 37, Kyiv-03056, Ukraine.

⁵ Taras Shevchenko National University of Kyiv, Volodymyrska Str., Kyiv, Ukraine

According to X-ray diffraction data, all ceramic La_{0.6}Sr_{0.15}Bi_{0.15}Mn_{1.1-x}Ni_xO_{3-δ} samples with x = 0, 0.05, 0.1, 0.15, 0.2 and 0.3 were single-phase and contain a rhombohedral $R\overline{3}c$ type of distortion. The lattice parameter of a perovskite structure slightly changed with increase in x. On the basis of the defect formation mechanism and the obtained experimental data, it has been established that the real structure is a defect and contains variable valence manganese Mn_{A}^{2+} , Mn_{B}^{3+} and Mn_{ν}^{4+} ions as well as cationic $V^{(c)}$ and anionic $V^{(a)}$ vacancies. The presence of vacancies leads to the appearance of superstoichiometric manganese Mn_A^{2+} ions in A-positions of the perovskite structure with a formation of nanoscale planar clusters of $\sim 10 - 25$ nm, which has been confirmed by the results of magnetic measurements at T = 77 K. In the compositions with x = 0.05 and 0.1, the anomalous magnetic hysteresis is due to 90° exchange antiferromagnetic interactions $(Mn_4^{2+} - O^{2-} - Mn_B^{(3,4)+})$ between the nanostructural cluster and the ferromagnetic matrix structure. During substitution of superstoichiometric manganese for Ni ions is a decrease in the phase transition temperatures and the magnitude of magnetoresistance effect as well as an appearance of a wide phase separation region which consists of coexisting inhomogeneous magnetic phases also including the nanoscale antiferromagnetic clusters.