Nanooptics and photonics

Size and concentration effect on the energy transfer and near infrared emission in GdVO₄:Bi³⁺, Ln³⁺ (Ln=Nd³⁺ and Yb³⁺) nanophosphors

<u>K. Lenczewska¹</u>, D. Hreniak¹

¹ Department of Spectroscopy of Excited States, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław. E-mail: K.Lenczewska@int.pan.wroc.pl

The present studies focus on the impact of a nanocrystals size and a concentration of dopant ions on luminescence properties of $GdVO_4$ co-doped with Bi^{3+} ions and rare earth ions (Nd^{3+}, Yb^{3+}) , especially on an energy transfer between the dopants. We showed in our previous work an impact of the nanocrystals grain size and the concentration of dopant ions on the luminescence properties of $GdVO_4$ co-doped with Bi^{3+} and Eu^{3+} ions [1]. In this study we investigate the impact of the size effect on the energy transfer in $GdVO_4$: Bi^{3+} , Nd^{3+} and $GdVO_4$: Bi^{3+} , Yb^{3+} nanophosphors. In result of the energy transfer, a near infrared emission both from the Nd^{3+} and Yb^{3+} ions was recorded due to so-called downconversion process (conversion of 1 near-UV photon into 2 infrared photons) [2,3].

- Lenczewska K., Gerasymchuk Y., Vu N., Liem N. Q., Boulon G., Hreniak D. The size effect on the energy transfer in Bi³⁺-Eu³⁺ co-doped GdVO₄ nanocrystals // J. Mater. Chem. C.-2017.-5.-P. 3014-3023.
- Lenczewska K., Stefanski M., Hreniak D. Synthesis, structure and NIR luminescence properties of Yb³⁺ and Bi³⁺-activated vanadate GdVO₄ // J. Rare Earths.-2016.-34, N 8.-P. 837-842.
- Lenczewska K., Tomala R., Hreniak D. Near-UV sensitized NIR emission in Nd³⁺ and Bi³⁺ co-doped GdVO₄ phosphors // Opt. Mater.-2017.-DOI: 10.1016/j.optmat.2017.04.015.