Nanocomposites and nanomaterials

Free volume in the MgGa₂O₄ spinel doped with Eu³⁺ ions studied with positron annihilation lifetime spectroscopy

A. Ingram¹, <u>H. Klym</u>², O. Shpotyuk³, A. Luchechko⁴, O. Kravets⁴

¹Opole University of Technology, Ozimska str., 75, Opole- 45370, Poland ²Lviv Polytechnic National University, Bandery str., 12, Lviv-79013, Ukraine E-mail: <u>halyna.i.klym@lpnu.ua</u>; <u>klymha@yahoo.com</u>

 ³Vlokh Institute of Physical Optics, Dragomanova str., 23, Lviv-79005, Ukraine
⁴Ivan Franko National University of Lviv, Tarnavskogo str., 107, Lviv-79017, Ukraine

 $MgGa_2O_4$ spinel doped with rare-earth ions are promising materials in a solidstate laser, thin-film electroluminescence displays, field emission displays and vacuum fluorescent displays, etc. In particular, magnesium gallate doped with Eu^{3+} ions has excellent luminescent properties in "red" and "orange" spectral region. The luminescent properties of these materials are well studied in [1]. In this work, we shall use positron annihilation lifetime spectroscopy (PAL) to analyze free volume in the pure MgGa₂O₄ spinel and MgGa₂O₄ doped with Eu^{3+} ions.

The PAL measurements with a full width at half maximum of 270 ps were performed with the ORTEC spectrometer using ²²Na source placed between two sandwiched samples. The obtained spectra were analyzed with LT 9.0 computer program and the best fitting results were obtained using four-component fitting procedures [2] with positron lifetimes $_{1, 2, 3}$, $_{4}$ and corresponding unity-normalized intensities I_{1} , I_{2} , I_{3} , I_{4} . The radius of free volumes in the studied spinel was calculated using Tao-Eldrup model considering o-Ps "pick-off" lifetimes of the third and fourth components with lifetimes $_{3}$ and $_{4}$. It is shown, that doping of MgGa₂O₄ spinel by Eu³⁺ ions results in increasing of free volume radius R_{4} from 13.97 Å to 14.42 Å and decreasing of radius R_{3} from 3.11 to 3.06 Å. It is established that void fraction in the studied materials increases from 3.08 % in pure MgGa₂O₄ spinel to 9.86 % in MgGa₂O₄ doped with Eu³⁺ ions.

1. Luchechko A., Kravets O., Kostyk L., Tsvetkova O. Luminescence spectroscopy of Eu^{3+} and Mn^{2+} ions in MgGa₂O₄ spinel // Radiation Measurements. – 2016. – **90**. – P. 47-50.

2. *Klym H., Ingram A., Hadzaman I., Shpotyuk O.* Evolution of porous structure and free-volume entities in magnesium aluminate spinel ceramics // *Ceramics International.* – **40(6).** – 2014. – P. 8561-8567.