Nanocomposites and nanomaterials

Formation and thermal stability of Ge_xHf_{1-x}O₂ solid solutions

L. Khomenkova¹, D. Lehninger², S. Ponomaryov¹, O.Gudymenko¹, M. Boisserie³, V. Yukymchuk¹, F. Gourbilleau³, J. Heitmann²

¹ V. Lashkaryov Institute of Semiconductor Physics, 45 Pr.Nauky, 03028 Kyiv, Ukraine E-mail: khomen@ukr.net

² Institute of Applied Physics, TU Bergakademie, D-09596 Freiberg, Germany
³ CIMAP Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS,
6 Blvd. Maréchal Juin, 14050 Caen, France

As twin-oxides, hafnia and zirconia are usually considered to demonstrate similar reaction on their doping with group IV elements including a stable tetragonal "high-k" phase. However, this statement was needed direct experimental confirmation. Recently, we have proved the role of Ge in the stability of tetragonal ZrO₂ "high-k" phase for Ge-doped ZrO₂ thin films (with Ge content up to 50 at.%) prepared by magnetron co-sputtering [1,2]. Here, we present the results obtained for Ge-doped HfO₂ thin films grown with the same deposition approach. The Ge content was varied from 0 up to 50 at%. The effect of thermal treatment on structural transformation in the films was studied by Auger spectroscopy, Raman scattering, FTIR and XRD methods.

As-deposited HfO₂ films were found to be crystalline. Their doping with [Ge]5at% reduces the degree of film crystallinity towards amorphous structure that demonstrates its stability for $T_A < 600C$. At higher T_A , the formation of Ge-ncs and tetragonal HfO₂ was detected. This latter formed at $T_C=600-670C$, while the Ge-ncs crystallized at $T_C=700-800C$. The comparison of these results with those reported earlier for Ge-doped ZrO₂ films [1,2] shows that the smaller Ge-ncs formed in Ge-HfO₂ films than that in Ge-ZrO₂ ones at the same thermal treatment. Our results support the theoretical consideration about stability of tetragonal "high-k" phases in Ge-doped HfO₂ and ZrO₂ materials on thermal treatment followed by phase separation. Its mechanism will be discussed in details.

- 1. D. Lehninger, et al. ECS Transactions, 2015, 68, 203.
- 2. L. Khomenkova, et al. Nanoscale Res. Lett., 2017, 12, 967.