"Physico-Chemical nanomaterials science"

Parameterization algorithms for mixed positron-electron interaction in nanostructurized substances

<u>A. Ingram^{1,2}</u>

¹Opole University of Technology, 75, Ozimska str., 45370 Opole, Poland ²Scientific Research Company "Carat", 202, Stryjska str., Lviv, 79031, Ukraine E-mail: a.ingram@po.opole.pl

At the present, the phenomenon of electron interaction with its antiparticle (positron) known as positron-electron annihilation in lifetime (PAL) measuring mode has been employed in a number of important practical applications like those probing free-volume nanostructurization in solids [1]. Under nanostructurization, the reconstruction route of PAL spectrum involves mixed positron (e^+) and positronium Ps (bound positron-electron state) channels resulting in three-term decomposed PAL spectra. The parametrization of these channels using simple trapping models (STM) [1] has a vital consequence for nanomaterials engineering.

In this report, this problem is reconsidered for different nanostructured solids with a help of available mathematical parameterization algorithms, such as:

(i) two-term STM fully ignoring third component in the PAL spectrum,

(ii) three-term STM accepting third component as common e⁺-trapping input,

(iii) two-term STM with third component inserted in a source contribution,

(iiii) two-term STM for generalized three-to-two component transition.

It is shown that intrinsic nanoscale structural inhomogeneities due to *guest* nanoparticles embedded in *host* substances can be described in terms of substitution trapping in e^+ -related and Ps-related sites (e^+ -to-Ps trapping conversion), allowing parameterization of interfacial free-volume voids responsible for e^+ -trapping and defect-free bulk lifetime of nanostructured matrix [2,3].

1. West R.N. Positron studies of lattice defects in metals. – In: Positrons in Solids. Ed. P. Hautojarvi. Springer-Verlag, Berlin-Heidelberg-New York, 1979. P. 89-144.

2. Shpotyuk O., Filipecki J., Ingram A., Golovchak R., Vakiv M., Klym H., Balitska V., Shpotyuk M., Kozdras A. Positronics of subnanometer atomistic imperfections in solids as high-informative structure characterization tool // Nanoscale Res Letters-2015.-10.-P. 77-1-77-5.

3. Shpotyuk O., Ingram A., Filipecki J., Bujňáková Z., Baláž P. Positron annihilation lifetime study of atomic imperfections in nanostructurized solids: On the parameterized trapping in wet-milled arsenic sulfides As_4S_4 // Phys Stat Sol B.-2016.-doi 10.1002/pssb.201552560.