"Nanocomposites and nanomaterials"

Schiff Bases Derived Palladium Complex: New Precursor For Supercritical Fluid Deposition Technique A. Egitmen¹, <u>B. Güzel²</u>

²Eastern Mediterranean University, Faculty of Art and Letter, Chemistry Department, Famagusta, Mersin 10, Turkey ²Cukurova University, Faculty of Art and Letter, Chemistry Department, 1130, Adana, Turkey bilgehan@cu.edu.tr

A novel *N*,*O* bidentate Schiff base ligand derived from 2-fluoro-6-(trifluoromethyl)aniline with 2-hydroxy-4-methylbenzaldehyde and its palladium complex has been successfully synthesized. The synthesized compounds characterized via spectral (FT-IR, ¹H NMR and ¹³C NMR) analyses. The obtained Pd-Schiff base complex was employed as a precursor in Supercritical Fluid Depositon Technique. For this purpose, SBA-15 was elected as support material due to the stability and high surface area. SBA-15 supported palladium nanoparticle surfaces were characterized by XRD, FE-SEM and TEM (fig. 1). The synthesized palladium nanoparticles act as catalyst during Suzuki-Miyaura cross coupling reactions (table 1).

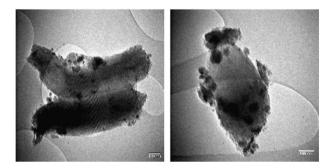


Figure 1. TEM micrograph of SBA-15 supported palladium nanoparticles

Table 1. Conversions of Suzuki-Miyaura reaction products

R Br	+	Cat. K ₂ CO ₃ Ethanol/H ₂ O
Entry	R	% Conversion
1	4-NO ₂	83%

a: conditions: 0,1 mmol ArBr, 0,12 mmol PhB(OH)₂, 0,12 mmol base, catalyst/ substrate ratio: 1/ 200(0.5 mol % Pd)

- 1. Bozbag, S. E., N. S. Yasar, L. C. Zhang, M. Aindow and C. Erkey (2011). 56(1): 105-113.
- 2. Jin, L., E. Kondoh, T. Oya and B. Gelloz (2013). 545: 357-360.