## Nanocomposites and nanomaterials

## Silica-supported Ni<sub>x</sub>O<sub>y</sub>, Zn<sub>x</sub>O<sub>y</sub> and Mn<sub>x</sub>O<sub>y</sub> nanocomposites: electrosurface properties and interaction with water and ndecane

<u>O.V. Goncharuk</u><sup>1</sup>, V.M. Bogatyrov<sup>1</sup>, O.O.Kazakova<sup>1</sup>, O.I. Oranska<sup>1</sup>, M.V. Galaburda<sup>1</sup>, E. Skwarek<sup>2</sup>, V. Januzs<sup>2</sup>, V.M. Gun'ko<sup>1</sup>

<sup>1</sup> Chuiko Institute of Surface Chemistry, NASU, 17 General Naumov Str., 03164 Kyiv, Ukraine. E-mail: iscgoncharuk@meta.ua

<sup>2</sup> Faculty of Chemistry, Maria Curie-Sklodowska University, M.C. Sklodowska Sq.3, 20031 Lublin, Poland.

A series of  $M_xO_y/SiO_2$  (where M = Ni, Zn, Mn) nanocomposites with different  $M_xO_y$  content (0.2, 1 and 3 mmol/g) were synthesized using deposition method and characterized using nitrogen adsorption–desorption, X-ray diffraction, FTIR spectroscopy, TEM, and photon correlation spectroscopy. Heats of immersion in water ( $Q_w$ ) and *n*-decane ( $Q_d$ ) were measured using microcalorimetry method, and the corresponding values of the hydrophilicity index  $K_h=Q_w/Q_d$  were calculated.



Fig. 2. ζ–potential vs. pH.

Formation of  $M_xO_y$  at a silica surface leads to diminishing  $Q_w$  and  $Q_d$  calculated per 1 g due to specific surface area decreasing, but  $Q_w$ calculated per 1 m<sup>2</sup> increases for  $Zn_xO_y/SiO_2$ and  $Mn_xO_y/SiO_2$  in comparison with that of the initial silica. It remained unchanged for Ni<sub>x</sub>O<sub>y</sub>/SiO<sub>2</sub> (Fig. 1). Modification of the silica surface with  $M_xO_y$  significantly changes the pH dependence of zeta potential (Fig. 2) and affects the surface charge density ( $\sigma$ ). Shift of the isoelectric point (pH<sub>IEP</sub>) and a character of the  $\zeta$ (pH) curve are determined by the  $M_xO_y$  phase, and pH<sub>IEP</sub> shifts toward higher values in a row Mn < Zn < Ni.

Acknowledgments: The authors are grateful to European Community, Seventh Framework Programme (PP7/2007–2013), Marie Curie International Research Staff Exchange Scheme (IRSES grant No 612484) for financial support of this work. The research was partly carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-06-024/09 Center of Functional Nanomaterials).