Nanocomposites and nanomaterials

Influence of low temperature on deformation changes the structure of the polyimide film PMA

V.G. Geidarov, I.S. Braude, N.N. Gal'tsov, Y.M. Pohribnaya

B.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine,47 Nauky Ave., Kharkiv, 61103, Ukraine E-mail: geydarov@ilt.kharkov.ua

Polyimide is a molecular substance (MS), which has a strong interaction within the molecules and the weak (van der Waals) interaction between molecules [1,2]. Such objects are randomly distributed molecules. On X-ray patterns MS appear as a diffuse halo which indicates on short-range order.

The purpose of the present work was to study the influence of low-temperature deformation on the X-ray scattering intensity and suggestions an interpretation of these parameters on the structure of polyimide films.

Samples for the experiments took the form of strips dimensions 70x5x0,08 mm³. X-ray diffraction studies were performed on a DRON-2.0. Measurements were carried out over a wide range of angles.

As a result of deformation the temperature of liquid nitrogen in the films two regions with different densities were formed. It was found that the deformation of films at liquid-helium temperatures, does not lead to significant changes in the structure of the film. Assuming that the film consists of quasi-linear chain molecules, two "mechanism" has been proposed. These "mechanisms" are qualitatively describe the processes taking place in the polyimide films PM-A after deformation at low temperatures.

- 1. A.I. Prokhvatilov, Plasticity and Elasticity of Cryocrystals // Begell House, USA, New York (2001).
- 2. *V.G. Manzhelii and Yu.A. Freiman*, Physics of Cryocrystals // AIP Press, Woodbury, New York (1996).