Nanooptics and photonics

Tunable red emission in Mn-doped MgO-TiO₂ solid solutions sintered by solid state reaction method

L. Borkovska¹, L. Khomenkova¹, I. Markevich¹, M. Baran¹, T. Stara¹, O. Gudymenko¹, V. Kladko¹, M. Boisserie², X. Portier², T. Kryshtab³

¹V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine;

²CIMAP, Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, 6 Blvd. Marŭchal Juin, 14050 Caen, France;

³Instituto Politŭcnico Nacional – ESFM, Av. IPN, Ed.9 U.P.A.L.M., 07738 Mexico D.F., Mexico

Recently, Mn-doped titanates, showing intense narrow red emission, have attracted considerable interest due to their potential application as red-emitting phosphors in warm LEDs. Here we present the results of optical and structural investigations of the films of Mn-doped Mg titanates. The samples were produced through a traditional high temperature solid-state reaction method at 800-1150 °C using TiO₂, MgO and MnSO₄ powders as the raw materials. Some of the samples were additionally co-doped with Li (using LiNO₃) in order to get insight on the role of Li in the promotion of the crystal phase formation. Mn content in the samples was varied from 10^{17} to 10^{21} cm⁻³.

The X-ray diffraction (XRD) shows that formation of Mg_2TiO_4 with a cubic structure sets in at 1050 °C and its concentration increases with the increase of the annealing temperature, while $MgTiO_3$ phase is present in all films studied. The XRD patterns of Li co-doped films proved that Li strongly promote crystal phase formation. In fact, the concentration of Mg_2TiO_4 was twice larger in the films sintered at 1050-1100 °C.

In the photoluminescence (PL) spectra, two sets of PL bands centered at 660 and 702 nm were observed. Both these components are ascribed to spin forbidden ${}^{2}\text{Eg} \rightarrow {}^{4}\text{A}_{2g}$ transition of the Mn⁴⁺ ions located in the Mg₂TiO₄ (the band at 660 nm) and MgTiO₃ (the band at 702 nm) crystal phases. The largest PL intensity was obtained for the films doped with [Mn]=10²⁰ cm³. An enhancement of the PL intensity at least in 2.5 times was observed for Li co-doped films, showing the highest efficiency for the films sintered at 1100 °C. These results demonstrate the ways for tuning the red emission in Mn-doped titanates.