Nanocomposites and nanomaterials

Effect of Ge content on the formation of Ge nanoclusters in magnetron sputtered GeZrO_x-based structures

<u>L. Khomenkova¹</u>, D. Lehninger², Yu. Polischuk¹, Ye. Havryliuk¹, O. Gudymenko¹, S. Ponomaryov¹, V. Yukhymchuk¹, V. Kladko¹, C. Röder³, J. von Borany⁴, J. Heitmann²

¹ V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, 45 Pr.Nauky, 03028 Kyiv, Ukraine E-mail: khomen@ukr.net

² Institute of Applied Physics, TU Bergakademie, D-09596 Freiberg, Germany
³Institute of Theoretical Physics, TU Bergakademie Freiberg, D-09596 Freiberg, Germany

⁴Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany

Memory structures with Ge-nanocrystals (NCs) embedded in SiO₂ provide a

larger memory window than the devices based on Si-NCs. However, Ge-NCs embedded in "high-k" matrix have attracted attention just recently. In this work, the effect of Ge content on the formation of $GeZrO_x$ solid solution and on thermo-

stimulated phase separation followed by the formation of Ge-NCs in ZrO₂ matrix is investigated.

The composite GeZrO_{x} films as $\text{GeZrO}_{x}/\text{ZrO}_{2}$ multilayers, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO_{2} targets in Ar plasma, were studied by means of spectroscopic ellipsometry, Raman scattering, FTIR and TEM methods versus deposition conditions and annealing treatment.

As-deposited GeZrO_x films were found to be homogeneous whatever Ge content. Thermal treatment stimulated a phase separation and a formation of Ge and ZrO_2 phases. The "start point" of this process depends significantly on Ge content in GeZrO_x films and/or Ge-doped sublayer thickness in multilayer structures. Although the phase separation begins at about 600-700°C, the higher Ge content and/or thicker Ge-doped sublayer result in the lowering of the annealing temperature caused phase separation, nucleation of Ge nanoclusters and their crystallization. Along with this the formation of tetragonal ZrO_2 occurs that offers an achievement of higher dielectric constant. The mechanism of phase separation

will be discussed in details and the ways to control the Ge-NCs formation in amorphous ZrO_2 host will be proposed.