Nanoscale physics

Field effect transistor with high density heterojunction gate

S.P. Novosvadlyv¹, S.I. Boyko¹

¹ Department of Computer Engineering and Electronics, Vasyl Stefanyk Precarpathian National University. 57 Shevchenko str., Ivano-Frankivsk-76018, Ukraine. E-mail: sergiy1300@gmail.com

One of the main disadvantages of a FET with Me-S gate is a great variation of threshold voltage with low allowable logic level voltage difference. This drawback results into low noise stability and limits maximum slope of Schottky FET [1,2]. In order to increase the height of the gate barrier and reduce ΔU_T FET with complex gate structure is required.

By forming of a thin layer of triple alloy of amorphous silicon (α -Si-Ge-B) between metal gate and channel in silicon FET, which has a high barrier with crystalline monosilicon was managed to get a small variation of U_T (<11 mV) for FET with $\lambda = 0.5 \ \mu m$ at 100 mm diameter substrate, steep slope (> 130 mS/mm) with 0.5 V logic amplitude. This technology allows creation of gates with $\lambda = 0.5$ μ m, ensuring high performance of FET: $\tau_D = 114$ ps at P_D $\tau_D = 1.6$ pJ and $\tau_D = 26$ ns at $P_D \tau_D = 3.3$ pJ. Similarly FET n-GaAs was obtained, which provide a logical amplitude of 0.94 V at τ_D = 34 ps and P_D = 1,9 mW.

Experimentally produced FET with hole plane-doped heterojunction gate had $g_m = 500 \text{ mS/mm}$ at $\lambda = 2 \ \mu \text{m}$ and a maximum drain current of 430 mA/mm with

mobility in the channel 4000 cm²/Vs. By reducing of channel length to 1 μ m it is possible to increase all these characteristics by 2 times. Main advantages of FETs of this type is the ability to form a n-, and p-type cannel and a possibility to work in depletion and enrichment modes, that makes possible to form a complementary structure for high speed logic circuits.

1. Pozhela Yu. K. Fizika bystrodejstvuyushchih tranzistorov. - Vilnius: Mokslas, 1989.-264 P.

Moskalyuk V. A., Timofeev D. I., Fedyaj A. V. Sverhbystrodejstvuyushchie pribory ehlektroniki. - Kyiv: NTUU KPI, 2012.-480 P.