Nanocomposites and nanomaterials

Radiotransparent ceramic in the system $SrO - Al_2O_3 - SiO_2$

M.S. Prytkina¹, G.V. Lisachuk¹, R.V Kryvobok¹, A.V. Zakharov¹, K.B. Dajneko¹, Y.V. Chefranov¹

¹ National Technical university "Kharkiv Polytechnic Institute", 21, Frunze str., 61002, Kharkiv, Ukraine. E-mail: prytkina8@gmail.com

As a result of theoretical studies for all composition of the simplex plan (fig. 1), the possibility of obtaining a strontium anorthite radiotransparent ceramic in a temperature range $700\div1700$ K was determined. Obtained data indicates that the reaction of SrO·Al₂O₃·2SiO₂ synthesis more likely flows without a formation of intermediate compounds (Sr₂SiO₄ and SrSiO₃). Raw material compositions No 3 and No 7 has a minimum value of free Gibbs energy. However, these compositions contain a large amount of Al₂O₃, and after SrO·Al₂O₃·2SiO₂ synthesis part of the alumina oxides remains unbound. Such excess of Al₂O₃ leads to increasing of sintering temperature and decreasing of electro-physical properties.

Realization of the experiment allowed to determine the most technological area of the compositions for the obtaining of radio transparent ceramic that provides maximum level of sintering (0,17÷0,20 %) and mechanical strength (105÷175 MPa) and also low values of dielectric permittivity (5,15÷6,09) at sintering temperature 1350 °C. The optimum ratio of raw materials is : quartz : strontium carbonate: alumina = 50 : 25 : 25.

Thus, as a result of theoretical and experimental researches the compositions area for radio transparent ceramic was optimized and the best composition with the water absorption -0,17 %, dielectric permittivity value -5,15 and mechanical strength -175 MPa was chosen.

The results will be useful for creation and improvement of operational characteristics and durability of new polyfunctional radiotransparent materials.