Nanoscale physics

Emergence of long-range triplet correlations in a nanoscale metallic ferromagnet/singlet superconductor bilayer

E. Rudenko, A. Krakovny, I. Korotash, D. Solomakha, M. Belogolovskii

Superconducting Electronics Department, Institute for Metal Physics, Natl. Acad. of Sci. of Ukraine. Academician Vernadsky Boulevard, 36, Kyiv-03680, Ukraine

Coexistence of superconductivity and ferromagnetism is a long-standing problem in solid-state physics. One of the possibilities to observe the interplay between itinerant electron ferromagnetism (F) and superconductivity (S) is to put the two metallic nanoscale films into a contact. In this case, spin-mixing effects can arise at the FS interface as a result of different matching conditions for spin-up and spin-down wave functions and lead to long-range triplet components in the F layer [1]. These effects are most effective at interfaces with strong ferromagnets especially when spin-flip centers are present in the FS boundary region.

The aim of our work has been to demonstrate the presence of such triplet correlations in a bilayer formed by a nanoscale strong ferromagnetic Ni film and a conventional singlet superconducting Pb layer. To characterize the effect of the proximized F layer on an S film, we have fabricated a tunnel junction on the S side. The quantity of interest was the ratio of the junction conductance in the S state $G_{\Delta}=dI(V \cong 2\Delta_{Pb}/e)/dV$, where Δ_{Pb} is the energy gap in Pb, to the normal (N) state conductance G_{N} assumed to be constant.

In the figure we present our data for a 150 nm-thick Pb layer in contact with a

Ni film measured at 4.2 K. It is evident that up to $d_{\text{Ni}} \approx 30$ nm the ratio $G_{\text{S}}(V)/G_{\text{N}}$ considerably depends on d_{Ni} . This finding is unexpected since penetration of singlet superconducting correlations into a strong ferromagnet is known to be short-ranged (not more than a few nanometers). We compare the observation with the data obtained for NS bilayers of the same thicknesses. The only explanation can be related to long-range triplet components which

are induced in F as well as in S layers due to the FS proximity effect and decay into the two layers on a length scale of the same order as in NS hybrids.

 Krivoruchko V. N., D'yachenko A. I., Tarenkov V. Yu. Point-contact Andreev-reflection spectroscopy of doped manganites: Charge carrier spin-polarization and proximity effects. // Fizika Nizkikh Temperatur.-2013.-39.-P. 276-292.