2. Nanocomposites and nanomaterials Peculiarities of the Electron Transport in Nanocomposite Films of Silicon Nanocrystals

O. L. Bratus^{,1}, A.A. Evtukh¹, <u>V.M. Prokopchuk²</u>

¹V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine.

²*Taras Shevchenko Kyiv National University, Institute of High Technologies, Kyiv, Ukraine. E-mail: torichuk@gmail.com*

Today, much attention is devoted to the properties of silicon nanostructures in connection with the trend of miniaturization of modern electronics devices The unique properties of nanocomposite silicon layers allow to us to create the devices for different purposes on their basis: emitters, photodetectors, chemical and biological sensors, photonic crystals, and others. Electron transport processes are not yet fully clarified, and it indicates the necessity to further research the electron processes in nanocomposite SiO₂(Si) films [1,2].

The nanocomposite SiO₂(Si) silicon nanocrystal films containing dielectric matrix SiO₂ was formed during the high-temperature annealing of ion-plasma sputtered SiO_x films [3] at T = 1100 °C for 30 min in N₂ atmosphere. Two types of nanocomposite SiO₂(Si) films were investigated. At formation at one of them the stoichiometry index of initial SiO_x film was $x_1 = 1.3$, and for another one it was $x_2 = 1.1$.

To define the mechanism of electrical conductivity, the I-V characteristics were measured at various temperatures, and the dependence of current from voltage in different coordinates was analyzed.

The investigations of electron transport through nanocomposite $SiO_2(Si)$ silicon nanocrystal films containing Si nanocluster in dielectric SiO_2 matrix enabled to determine the electron transport mechanism. The current flow was realized by variable-range hopping through the traps near of the Fermi level. It allows us to determine the some parameters of electron traps taking part in the current transport [1-3].

1. A.G. Nassiopoulou, Silicon nanocrystals in SiO₂ thin layer // *Encyclopedia of Nanoscience and Nanochnology*, **9**, p. 793-813 (2004).

2. O.L. Bratus', A.A. Evtukh, V.A. Ievtukh, V.G. Litovchenko, Nanocomposite SiO₂(Si) films as a medium for non-volatile memory // *J. Non-Crystalline Solids*, **354**, p. 4278-4281 (2008).

3. O.L. Bratus', A.A. Evtukh, O.S. Lytvyn, M.V. Voitovych, V.O. Yukhymchuk, Structural properties of nanocomposite SiO₂(Si) films obtained

by ion-plasma sputtering and thermal annealing // Semiconductor Physics, Quantum Electronics & Optoelectronics, 14(2), p. 247-255 (2011).