# "Physico-chemical nanomaterials science" 

## Structural behavior of solid solutions in the $\mathrm{NdAlO}_{3}-\mathrm{SrTiO}_{3}$

## system

N.A. Ohon신, L.O. Vasylechko ${ }^{1}$, R.V. Stepchuk ${ }^{1}$, I.I. Syvorotka ${ }^{2}$<br>${ }^{1}$ Lviv Polytechnic National University, 12 Bandera St, Lviv-79013, Ukraine. E-mail: nat.ogonj@gmail.com<br>${ }^{2}$ Scientific Research Company "Carat", Lviv, Ukraine

Materials with perovskite structure based on rare earth aluminates $\mathrm{RAlO}_{3}$ and their solid solutions with strontium titanate $\mathrm{SrTiO}_{3}$ are considered and already used as prospective functional materials, such as electrode materials in solid oxide fuel cells, radio-frequency ceramics, phosphors and refractory materials due to their excellent dielectric properties.

Mixed aluminates-titanates $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{Al}_{1-\mathrm{x}} \mathrm{Ti}_{\mathrm{x}} \mathrm{O}_{3}(x=0.3 \div 0.9)$ were prepared from stoichiometric amounts of constituent oxides $\mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}$ and Sr carbonate $\mathrm{SrCO}_{3}$ by solid-state reaction technique in air at 1773 K for 9 h . X-ray powder diffraction examination revealed pure perovskite structure for all samples synthesized. The $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{Al}_{1-\mathrm{x}} \mathrm{Ti}_{\mathrm{X}} \mathrm{O}_{3}$ samples with $x=0.7,0.8$ and 0.9 show ideal cubic perovskite structure, whereas the samples with $\mathrm{x}=0.3$ and 0.5 addopt rhombohedral structure isotypic with $\mathrm{NdAlO}_{3}$. Full-profile Rietveld refinement, performed in corresponding space groups $P m m$ and $R c$ show good fits between experimental and calculated profiles for all compositions, thus confirm their phase purity and crystal structures. Comparison of the obtained structural parameters of the mixed aluminates-titanates with the literature data for the end members of the system $\mathrm{NdAlO}_{3}$ and $\mathrm{SrTiO}_{3}$ prove a formation of two kinds of solid solution $\mathrm{Nd}_{1-}$ $\mathrm{x}_{\mathrm{x}} \mathrm{Xr}_{\mathrm{x}} \mathrm{Al}_{1-\mathrm{x}} \mathrm{Ti}_{\mathrm{x}} \mathrm{O}_{3}$ with rhombohedral $(x<0.7)$ and cubic ( $x$ 0.7) perovskite structure (Fig. 1).

|  | Fig. 1. Concentration dependencies <br> of the unit cell dimensions illustrating <br> concentration-induced continuous <br> phase transition Rc-Pmm in |
| :--- | :--- |
| $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{Al}_{1-\mathrm{x}} \mathrm{Ti}_{\mathrm{x}} \mathrm{O}_{3}$ series. Lattice |  |
| parameters and cell volume of the |  |
| rhombohedral (Rh) cell are |  |
| normalized to the perovskite ones as |  |
| follows: |  |
| $a_{p}=a_{r} / \sqrt{ } 2, c_{p}=c_{r} / \sqrt{ } 12, V_{p}=V_{r} / 6$. |  |

