"Physico-chemical nanomaterials science"

Structural behavior of solid solutions in the NdAlO₃-SrTiO₃ system

N.A. Ohon¹, L.O. Vasylechko¹, R.V. Stepchuk¹, I.I. Syvorotka²

¹ Lviv Polytechnic National University, 12 Bandera St, Lviv-79013, Ukraine. E-mail: <u>nat.ogonj@gmail.com</u>

² Scientific Research Company "Carat", Lviv, Ukraine

Materials with perovskite structure based on rare earth aluminates $RAIO_3$ and their solid solutions with strontium titanate $SrTiO_3$ are considered and already used as prospective functional materials, such as electrode materials in solid oxide fuel cells, radio-frequency ceramics, phosphors and refractory materials due to their excellent dielectric properties.

Mixed aluminates-titanates $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ ($x = 0.3 \div 0.9$) were prepared from stoichiometric amounts of constituent oxides Nd_2O_3 , Al_2O_3 , TiO_2 and Srcarbonate $SrCO_3$ by solid-state reaction technique in air at 1773 K for 9 h. X-ray powder diffraction examination revealed pure perovskite structure for all samples synthesized. The $Nd_{1-x}Sr_xAl_{1-x}Ti_xO_3$ samples with x=0.7, 0.8 and 0.9 show ideal cubic perovskite structure, whereas the samples with x=0.3 and 0.5 addopt rhombohedral structure isotypic with NdAlO₃. Full-profile Rietveld refinement, performed in corresponding space groups *Pmm* and *Rc* show good fits between experimental and calculated profiles for all compositions, thus confirm their phase purity and crystal structures. Comparison of the obtained structural parameters of the mixed aluminates-titanates with the literature data for the end members of the system NdAlO₃ and SrTiO₃ prove a formation of two kinds of solid solution Nd₁₋ $_xSr_xAl_{1-x}Ti_xO_3$ with rhombohedral (x < 0.7) and cubic (x = 0.7) perovskite structure (Fig. 1).

> Fig. 1. Concentration dependencies of the unit cell dimensions illustrating concentration-induced continuous phase transition Rc-Pmm in Nd_{1-x}Sr_xAl_{1-x}Ti_xO₃ series. Lattice parameters and cell volume of the rhombohedral (*Rh*) cell are normalized to the perovskite ones as follows: $a_p = a_r/\sqrt{2}$, $c_p = c_r/\sqrt{12}$, $V_p = V_r/6$.