Nanocomposites and nanomaterials

Nano-particulate structures with glucose derived char and compacted fumed silica in gaseous and aqueous media

L.V. Nosach¹, E.F. Voronin¹, E.M. Pakhlov¹, B. Charmas², J. Skubiszewska-Zięba², E. Skwarek², W. Janusz², V.M. Gun'ko¹

¹ Chuiko Institute of Surface Chemistry Natl. Acad. of Sci. of Ukraine., 17 General Naumov Street, Kyiv-03164, Ukraine. E-mail: nosachlv@ukr.net

² Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, Lublin-20-031, Poland.

Compacted fumed silica (densil, DS) was prepared using mechanochemical activation (MCA) of wetted nanosilica A-300 (0.5 g of water per gram of dry silica) in a powder state. Densil is characterized by a value of the specific surface area ($S_{\text{BET}} = 328 \text{ m}^2/\text{g}$) close to that of initial silica (330 m²/g) but by a greater value of the pore volume (1.325 cm³/g vs. 0.826 cm³/g) and a greater bulk density (0.21 g/cm³ vs. 0.05 g/cm³). Despite these textural changes, densil remains in the powder state. Densil was used as a matrix for preparation of a composite with glucose (Gl/DS) (90 g of glucose + 25 g of water per 50 g of DS), which was then carbonized to form nano-particulate char bound to nanosilica. The Gl/DS composite has strongly reduced porosity (0.227 cm³/g) and specific surface area (42 m²/g) compared to DS. After carbonization of bound glucose (500 °C for 3 h), the values of pore volume (0.5 cm³/g) and S_{BET} (302 m²/g) of increase, and contribution of nanopores significantly grows.

The particle size distribution of C/DS in the aqueous media is similar to that of DS (mainly in the range of 0.1-10 m) that is appropriate for some practical applications of both DS and C/DS, *e.g.* as drug carriers and enterosorbents.

The developed method of gas-phase mechano-sorption modification of nanooxides can be useful for adsorption modification of disperse materials by non-volatile compounds using a small amount of a solvent (~30-40 wt.% in a mixture).

Acknowledgment

The authors are grateful to European Community, Seventh Framework Programme (FP7/2007-2013), Marie Curie International Research Staff Exchange Scheme (grant no. 612484).