Nanocomposites and nanomaterials

Microwave properties of one-dimensional hybrid quasi-periodic multilayered photonic structure

L. Vovchenko, O. Lozitsky, I. Sagalianov, L. Matzui, V. Launetz

Department of Physics, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64/13, Kyiv, 01601, Ukraine E-mail: email.of. corresponding <u>olozitsky@gmail.com</u>

This work presents the results of modeling of microwave transmission properties at normal incidence for the shields designed as one-dimensional quasiperiodic multilayered photonic structure in frequency ranges of 26 - 37.5 and 37.5 - 54 GHz. The simulation of the transmission and reflection indexes was performed in C++ and Wolfram Mathematica environments using the impedance method.

The transmission spectra through the periodic multilayer structure show a stacking band gap. The number of such band gaps can be controlled by varying the number and parameters of layers (type 1 and type 2), namely the complex permittivity * and the layer thickness. Fig. 1 presents the transmission spectra for

multi-layered periodic structure consisting of 10 layers: 5 layers of type 1 (=2.9,

	5 51 ()
	tan=0, <i>l</i> =5mm) and 5 layers of type 2 (polymer layers filled with carbon
Fig. 1. EMR transmission index for period quasi-photonic structure	nanotubes or graphite nanoplatelets, $=20$, $\tan_e=0.003$, $l=1.1$ mm). It was found that
	the insertion of the defects into the quasi- periodic multilayer photonic crystals can lead to distortion of the transmission spectrum. So, as it is seen from Fig. 1, the substitution of one layer of type 2 by magnetic layer (composite layers filled with Fe_3O_4 , or BaM, or Co) causes the
	arising in transmission spectrum of the defect mode which is very sensitive to the parameters of the defect layer.

Thus by increasing these photonic band gaps, we can obtain high reflection or absorption indexes, necessary for technological applications in devices, capable of storing, guiding and filtering microwaves.