Nanocomposites and nanomaterials

Effect of Nd³⁺ ions on phase transformations and microstructure of 0-4 at.% Nd³⁺:Y₃Al₅O₁₂ transparent nanoceramics

<u>D.Yu. Kosyanov¹</u>, R.P. Yavetskiy², V.N. Baumer², I.O. Vorona², M.V. Dobrotvorskaya², A.I. Cherednichenko¹, V.I. Vovna¹, A.V. Tolmachev²

 ¹ Far Eastern Federal University, Sukhanova Street, 8, Vladivostok-690950, Russian Federation.
E-mail: kosjanovdenis@rambler.ru; kosianov.diu@dvfu.ru

² Institute for Single Crystals of NAS of Ukraine, Nauki Avenue, 60, Kharkov-61001, Ukraine.

Neodymium doped yttrium aluminum garnet (1-4 at.%) Nd³⁺:Y₃Al₅O₁₂ laser ceramics were obtained by the reactive sintering method using commercial α -Al₂O₃, Y₂O₃, and Nd₂O₃ powders as starting materials, and SiO₂, ZrO₂ as a complex sintering aid. Phase composition and microstructure of Nd³⁺:Y₃Al₅O₁₂ substitutional solid solutions were studied by XRD, SEM, XPS and UV-Vis spectrophotometry methods. The regularities for entering of iso- (Nd³⁺) and heterovalent (Si⁴⁺, Zr⁴⁺) impurities into the garnet structure were revealed based on an assumption of formation of substitutional solid solutions. The influence of impurity point defects on optical properties of Nd³⁺:Y₃Al₅O₁₂ laser ceramics was studied.

It has been determined that for $2.88Y_2O_3-0.12Nd_2O_3-5Al_2O_3$ powder system the temperature range of the formation of substitutional solid solution $(Y_{0.96}Nd_{0.04})_3Al_5O_{12}$ during the solid-state synthesis is 1350-1500 °C. It has been shown that the interaction of $(Y_{1-y}Nd_y)AlO_3$ and $(Nd_{1-z}Y_z)AlO_3$ (y, z≤0.02) monoaluminates with alpha-alumina dominates in the final stage of $(Y_{0.96}Nd_{0.04})_3Al_5O_{12}$ synthesis.

XPS results for 1-4 at. % Nd^{3+} :Y₃Al₅O₁₂ laser ceramics confirmed that Nd^{3+} ions were effectively incorporated into the garnet matrix and participated in the chemical bonding. The dopant concentration in 4 at. % Nd^{3+} :Y₃Al₅O₁₂ ceramics coincides with a nominal one. The linear dependence of the lattice parameter *a* on the concentration of Nd^{3+} ions in 1-4 at.% Nd^{3+} :Y₃Al₅O₁₂ ceramics correlates with theoretical calculations and indicates the formation of the isomorphic substitutional solid solutions (Y_{1-x}Nd_x)₃Al₅O₁₂ (x=0.01-0.04) with minor accumulations of the lattice defects. Sintered 2 at.% Nd^{3+} :YAG ceramics show in-line optical transmission of about 83.5 % at the lasing wavelength of neodymium ions (λ =1.064 µm) for 2.5-mm-thick samples; this value is comparable with that for single crystals of similar composition.