Nanocomposites and nanomaterials

Tribological behaviour of Si₃N₄-based nanocomposites

<u>V. G. Kolesnichenko¹</u>, O. B. Zgalat-Lozynskyy¹, V. T. Varchenko¹, N. I. Tischenko¹, A. V. Ragulya¹, M. Andrzejczuk²

¹ Institute for Problems of Materials Science, 3, Krzhizhanovsky str., Kiev, 03680, Ukraine.

E-mail: vgk.extra@gmail.com

² Warsaw University of Technology, Wołoska 141, 02-507, Warszawa, Poland.

Nanocomposites made with non-oxide ceramic compounds exhibit extremely high hardness and wear resistance, low specific gravity, and maintain mechanical properties at high temperatures without oxidation [1–3]. Unique properties of Si_3N_4 -based nanocomposites found an application in novel wear-resistive components, capable to withstand severe operation conditions such as cryogenic and high temperatures, boiling sea water, bases, and acids [2–4].

A comprehensive study was performed to evaluate tribological performances of newly developed Si_3N_4 -based nanocomposites enhanced by either Si_3N_4 nanowhiskers or TiN nanoparticles and consolidated via a Rate Controlled Sintering and Spark Plasma Sintering techniques. A wear resistance of Si_3N_4 -based nanocomposites was studied under dry sliding conditions using bearing steel, hard alloy, and Si_3N_4 -based nanocomposites counterparts. The Si_3N_4 -TiN nanocomposites exhibited low sliding friction coefficient <0.35 with hard alloy and <0.25 with Si_3N_4 -based nanocomposite. A specific wear rate for the investigated nanocomposites was estimated to be in the range from $2 \cdot 10^{-7} \text{ mm}^3/\text{N} \cdot \text{m}$ to

 $5 \cdot 10^{-8} \text{ mm}^3/\text{N} \cdot \text{m}$. A film transfer from the Si₃N₄-based nanocomposites was found on the surface of the hard alloy counterpart. A chemical resistance of the Si₃N₄-TiN nanocomposite was investigated in aggressive mediums, such as acids and bases at elevated temperatures.

1 Gleiter H. Nanostructured materials: basic concepts and microstructure // Acta Mater. – 2000. – **48**. – P. 1–29.

2 Herrmann M., Shen Z., Schulz I., Hu J., Jancar B. Silicon nitride nanoceramic densified by dynamic grain sliding // J. Mater. Res. – 2010. – 25 (12). – P. 2354–61.

3 Zgalat-Lozynskyy O. B. Nanocomposites based on refractory compounds, consolidated by Rate-Controlled and Spark-Plasma Sintering (Review) // Powder Metall Met. C+. – 2014. – **53** (1–2). – P. 19–30.

4 Zgalat-Lozynskyy O. B., Andrzejczuk M, Varchenko V. T., Herrmann M., Ragulya A. V., Polotai A. V. Superplastic deformation of Si_3N_4 based nanocomposites reinforced by nanowhiskers // Mater. Sci. Eng. A. – 2014. – **606**. – P. 144–49.