Nanocomposites and nanomaterials

Nanostructurization in MgO-Al₂O₃ ceramics under the water influence tested with positron-positronium trapping algorithm

H. Klym¹, O. Shpotyuk², A. Ingram³, I. Hadzaman⁴, A.I. Popov⁵

 ¹ Lviv Polytechnic National University Bandery str., 12, Lviv-79013, Ukraine E-mail: klymha@yahoo.com
² Vlokh Institute of Physical Optics Dragomanova str., 23, Lviv-79005, Ukraine
³ Opole University of Technology Ozimska str., 75, Opole- 45370, Poland
⁴ Drohobych State Pedagogical University, I. Franko str., 24, Drohobych-82100, Ukraine
⁵ Institute for Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia

A meaningful characterization of positron trapping in nanostructured MgO- Al_2O_3 spinel-type ceramics extensively studied as one of the most perspective materials for humidity sensors is developed at the basics of positron annihilation lifetime (PAL) measurements. But in water-immersed ceramics the two channel will be possible: positron trapping and positronium (Ps) decaying [1]. Adsorbed water influences on nanostructurization process in MgO- Al_2O_3 ceramics.

In this work, we shall use positron-positronium trapping algorithm to analyze PAL spectra of MgO-Al₂O₃ ceramics under water influence. PAL spectra were fitted on four components with positron lifetimes τ_1 , τ_2 , τ_3 , τ_4 and corresponding unity-normalized intensities I_1 , I_2 , I_3 , I_4 . To apply positron-positronium trapping algorithm, the second and third components were averaged and interpreted as positron-trapping component. Thus, this approach allows description of additional channel in terms of substitutional positron-Ps trapping, which occurs as transformation of positron-trapping sites in Ps-sites due to adsorbed water in nanopores of ceramics.

1. *Klym H., Ingram A., Shpotyuk O., Hadzaman I., Solntsev V.* Water-vapor sorption processes in nanoporous MgO-Al₂O₃ ceramics: the PAL spectroscopy study // Nanoscale research letters, 2016, 11:133, p.1-7.