Nanocomposites and nanomaterials

CO₂ reduction to methanol under visible light irradiation over nanostructured CuFe₂O₄/TiO₂ photocatalyst

<u>Md. Maksudur Rahman Khan¹,</u> M. Rahim Uddin¹, , Hamidah Abdullah¹, Huei Ruey Ong¹, Chin Kui Cheng¹

¹ Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia. E-mail: mrkhancep@yahoo.com

Photocatalytic reduction of CO_2 to methanol has the beneficial to overcome fossil fuel depletion and global warming problem at the same time. TiO_2 is widely studied photocatalyst, but active only under UV-light irradiation. To develop efficient visible light active photocatalyst some conditions need to be satisfied, like i) increase the visible light absorption by decreasing the band gap, ii) efficient charge separation, iii) shift the conduction band (CB) to more negative region than the standard potentials for CO_2 reduction reactions [1-3]. Copper ferrite (CuFe₂O₄) is a visible light responsive material possessing very low band gap. The incorporation of CuFe₂O₄ onto TiO₂ might alter the band edges of the composite and might increase the CO₂ reduction ability. In the present work, CuFe₂O₄ and $CuFe_2O_4/TiO_2$ was synthesized to explore the photocatalytic reduction of CO_2 under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by XRD and it indicates CuFe₂O₄ as tetragonal phase incorporation with anatase TiO₂ in CuFe₂O₄/TiO₂ hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO₂. Photoluminescence (PL) technique was used to study the electron-hole (e^{-}/h^{+}) recombination process. The photocatalytic performance of CuFe₂O₄/TiO₂ was evaluated based on the methanol yield with varying amount of TiO₂ over CuFe₂O₄. Methanol yield over CuFe₂O₄/TiO₂ was found to be about three times higher (651 µmol/gcat L) than that of CuFe₂O₄ photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO₂/CH₃OH.

1. *Kezzim A., Nasrallah N., Abdi A., Trari M.* Visible light induced hydrogen on the novel hetero-system CuFe₂O₄/TiO₂ // Energ Convers Manage.-2011.-**52**,-P. 2800-2806.

^{2.} *Yang H., Yan J., Lu Z., Cheng X., Tang Y.* Photocatalytic activity evaluation of tetragonal CuFe₂O₄ nanoparticles for the H₂ evolution under visible light irradiation // J Alloys Compd.-2009.-**476**,-P 715-719.

^{3.} Dalida M. L. P., Amer K. M. S., Su C.-C., Lu M.-C. Photocatalytic degradation of acetaminophen in modified TiO₂ under visible irradiation // Environ Sci Pollut R.-2014.-21,-P 1208-1216.